
TELAVIVUNIVERSITY@אוניברסיטתתל-אביב
Raymond and Beverly Sackler

Faculty of Exact Sciences

The Blavatnik School of Computer Science

Constructing Two-Dimensional

Voronoi Diagrams via

Divide-and-Conquer of Envelopes

in Space

Thesis submitted in partial fulfillment of the requirements for the M.Sc.

degree in the School of Computer Science, Tel-Aviv University

by

Ophir Setter

This work has been carried out at Tel-Aviv University

under the supervision of Prof. Dan Halperin

May 2009

i

Acknowledgements

Many people had great influence on this thesis and its author during the research period.

I deeply thank my advisor, Prof. Dan Halperin, for his help in guidance, support, and

encouragement, and for introducing me the field of applied computational geometry.

I wish to thank Efi Fogel and Eric Berberich for fruitful collaboration and for sharing priceless

knowledge. Special thanks are given to Efi for his warm hospitality during fruitful Friday

afternoons and for providing the basis for the player software, which enabled the creation of

the 3D figures of this thesis. Special thanks are given to Eric for his admirable motivation

and for sharing his insights through many rich discussions. I also thank Prof. Micha Sharir

for his cooperation and help in theoretical parts of the thesis.

I would also like to thank all other members of the applied computational geometry lab at the

computer science school of Tel-Aviv University who provided support and useful suggestions.

Special thanks are given to Ron Wein and to Michal Meyerovitch.

I wish to thank all members of the algorithms group at the Max-Planck-Insitut für Infor-

matik in Saarbrücken, Germany, for introducing and helping with the field of computational

algebra, and for their hospitality. Special thanks are given to Michael Hemmer, to Eric

Berberich, and to Michael Kerber.

Work on this thesis has been supported in part by the Israel Science Foundation (grant

no. 236/06), by the German-Israeli Foundation (grant no. 969/07), and by the Hermann

Minkowski–Minerva Center for Geometry at Tel Aviv University.

ii

iii

Abstract

We present a general framework for computing two-dimensional Voronoi diagrams of differ-

ent classes of sites under various distance functions. The framework is sufficiently general

to support diagrams embedded on a family of two-dimensional parametric surfaces in R
3.

The computation of the diagrams is carried out through the construction of envelopes of

surfaces in 3-space provided by Cgal (the Computational Geometry Algorithm Library).

The construction of the envelopes follows a divide-and-conquer approach. A straightforward

application of the divide-and-conquer approach for computing Voronoi diagrams yields al-

gorithms that are inefficient in the worst case. We prove that through randomization the

expected running time becomes near-optimal in the worst case. We show how to employ our

framework to realize various types of Voronoi diagrams with different properties by providing

implementations for a vast collection of commonly used Voronoi diagrams. We also show

how to apply the new framework and other existing tools from Cgal to compute minimum-

width annuli of sets of disks, which requires the computation of two Voronoi diagrams of two

different types, and of the overlay of the two diagrams. We do not assume general position.

Namely, we handle degenerate input, and produce exact results.

iv

Contents

1 Introduction 1

2 Preliminaries 9

2.1 Voronoi Diagrams . 9

2.2 Divide-and-Conquer Algorithm for Envelopes 11

2.3 CGAL and the Arrangement on surface 2 Package 13

2.4 Exact Construction of Envelopes in CGAL 16

3 From Envelopes to Voronoi Diagrams 19

3.1 Divide-and-Conquer Algorithm for Voronoi Diagrams 19

3.2 Theoretical Aspects . 21

3.3 Robust Implementation with CGAL . 23

3.4 Randomizing for Optimality . 26

4 Examples and Implementation Details 29

4.1 Planar Voronoi Diagrams . 30

4.1.1 Voronoi Diagrams with Linear Bisectors 30

4.1.2 Voronoi Diagrams with Higher-Degree Algebraic Bisectors 34

4.1.3 Voronoi Diagrams with Semi-Algebraic Bisectors 37

4.2 Spherical Voronoi Diagrams . 40

4.2.1 Arrangements of Geodesic Arcs on the Sphere 41

4.2.2 Power Diagrams on the Sphere . 43

4.3 Speeding-up the Computation . 46

v

vi CONTENTS

5 Discussion: Advantages and Limitations 51

5.1 Advantages . 51

5.2 Limitations . 56

6 Application: Minimum-Width Annulus of Disks 59

6.1 Introduction . 59

6.2 Algorithm for Minimum-Width Annulus of Disks 62

6.3 Implementation Details and Experimental Results 67

7 Conclusions and Future Work 71

List of Figures

1.1 Voronoi diagram figure from Descartes research 1

1.2 Various Voronoi diagrams . 6

3.1 Merging two Voronoi diagrams. 20

3.2 Worst-case quadratic multiplicatively-weighted Voronoi diagram. 21

4.1 Computing Voronoi diagrams of points using lower envelopes. 31

4.2 Voronoi diagrams of points . 32

4.3 Voronoi diagrams of linear objects . 39

4.4 Compare-u predicate implementation . 42

4.5 Geodesic distance function on the sphere. 43

4.6 Voronoi diagrams on the sphere . 46

4.7 Three-bisectors optimization . 48

5.1 Effect of randomization . 53

5.2 Degenerate Voronoi diagrams . 54

5.3 Farthest-site Voronoi diagrams . 55

5.4 Overlaying an arrangement and a Voronoi diagram on the sphere 56

6.1 Theorem 6.7 . 64

6.2 Computing a minimum-width annulus of disks 66

vii

viii LIST OF FIGURES

1
Introduction

Figure 1.1: A Voronoi diagram

figure from a solar system re-

search by Descartes (1644).2

In layman’s terms the Voronoi diagram of a given set of ob-

jects is the subdivision of the space into regions where each

region consists of points that are closer to one particular ob-

ject than to all others of the given set of objects. Voronoi

diagrams are intuitive structures and are even found in var-

ious forms in nature. The concept has reappeared in diverse

fields of science throughout history, often receiving a differ-

ent new name: Wigner-Seitz zones (chemistry and physics),

domains of action (crystallography), Thiessen polygons (ge-

ography), etc.

Most text books cite a 1644 solar system research by

Descartes [Des44] as the first documented application of Vo-

ronoi diagrams, even though they were not explicitly defined

there. There is no controversy, however, that Dirichlet was

the first to formally define the concept of Voronoi diagrams,

and that the initial extensive studies on the subject were con-

2The figure is taken from: http://e.simwe.com/228342/viewspace-6935

1

http://e.simwe.com/228342/viewspace-6935

2 Chapter 1. Introduction

ducted by him and by Georgy Voronoi [AK00,OBSC00]. This clarifies the fact that the two

leading aliases for the diagrams currently are Voronoi diagrams and Dirichlet tessellations.

The other most common term refers to the dual diagram to the Voronoi diagram — the

Delaunay triangulation (or tessellation). Despite the fact that Voronoi was the first to con-

ceive the dual diagram to the Voronoi diagram, Delaunay was the first to directly define it,

earning an alias after his name.

Shamos and Hoey introduced Voronoi diagrams to the field of Computer Science [SH75].

They used Voronoi diagrams to improve running times of algorithms for problems, which

had been considered unrelated, such as smallest enclosing circle and various closest-point

problems. Since then, Voronoi diagrams were thoroughly investigated, and were used to

solve many geometric problems.

The concept of Voronoi diagrams, that is, the division of a space into maximally-connected

cells, where each cell consists of points that are closer to a particular site than to any other

site of a given collection of sites, was extended beyond the scope of point sites and the

Euclidean metric [AK00, BWY06, OBSC00]. In fact, the original diagram referred to by

Descartes (mentioned above) seems more like, what nowadays is called, a weighted Voronoi

diagram than a standard Voronoi diagram of points.

The most straightforward generalization of the standard Voronoi diagram is to various

kinds of geometric sites while staying in the Euclidean space. These diagrams include Voronoi

diagrams of line segments, Voronoi diagrams of circular arcs, Voronoi diagrams of disks in

the plane, and Voronoi diagrams of ellipses in the plane.

Different applications impose different types of distance functions to the sites, inducing di-

verse types of Voronoi diagrams. Among those are: power diagrams of disks, multiplicatively-

weighted Voronoi diagrams, and Voronoi diagrams with respect to the Lp (Minkowski) and

Karlsruhe (Moscow) metrics [OBSC00]. Two particularly interesting types of diagrams are

the L1-diagram of points that can have two-dimensional cells induced by multiple sites (two-

dimensional bisectors), and the multiplicatively-weighted Voronoi diagram that can be of

quadratic size in the number of input sites.

Voronoi diagrams were also defined in various ambient spaces. For example, Voronoi

diagrams defined over different two-dimensional surfaces, such as the Voronoi diagram of

points on a sphere, the Voronoi diagram of points on a cone, and the power diagram on a

sphere. In higher dimensions the main research efforts concentrated on Voronoi diagrams

of point sites and power diagrams, neglecting other types of sites. For example, though

the complexity of the Euclidean Voronoi diagram of lines with fixed orientations in three-

dimensions was investigated by Koltun and Sharir [KS03a], a complete combinatorial and

3

algebraic description of the diagram of three lines was given by Everett et al. [ELLD07]

only recently. In this thesis we concentrate on Voronoi diagrams defined over certain two-

dimensional parametric surfaces in 3-space.

Klein unified some classes of planar Voronoi diagrams under a generalized framework

by introducing abstract Voronoi diagrams, which are defined in terms of their bisector

curves [Kle89,KMM93].

Every type of nearest-site Voronoi diagram defines a complementary farthest-site Vo-

ronoi diagram. The farthest-site Voronoi diagram is useful on its own, and one can find

applications where both (nearest and farthest) Voronoi diagrams are needed; see Chap-

ter 6. Various farthest-site Voronoi diagrams have nearly-linear time construction algo-

rithms [PS85, AFW88]. Mehlhorn, Meiser, and Rasch [MMR01] used Klein’s terminology

and proved that farthest abstract Voronoi diagrams are of linear size and can be computed

with a randomized algorithm in O(n logn) expected running time.

Algorithms

Numerous approaches for computing Voronoi diagrams were developed. Shamos and Hoey

used the divide-and-conquer paradigm to obtain the first optimal Θ(n log n)-time construc-

tion algorithm for the Voronoi diagram of points in the plane [SH75]. The algorithm par-

titions the set of points into two sets of roughly equal size by a vertical line, computes the

respective right and left Voronoi diagrams, and finally, carefully merges the two diagrams

together. Their main achievement was to prove that there is a polygonal line that “stitches”

the two diagrams together (in the merge step), and that it can be found in O(n) time,

yielding a Θ(n logn)-time overall algorithm. A similar approach was used by Klein [Kle89]

to supply a Θ(n logn)-time algorithm for abstract Voronoi diagrams. Guibas and Stolfi de-

scribed the algorithm in the context of the Delaunay graph (the dual to the Voronoi graph)

as a major application for their quad-edge data structure [GS83]. Dwyer improved the

expected running time of the divide-and-conquer algorithm for various point distributions

to O(n log logn) [Dwy87].

A different divide-and-conquer approach was recently proposed by Aichholzer et al.

[AAA+09]. They employ a divide-and-conquer medial-axis algorithm on an augmented do-

main to compute the Voronoi diagrams of various types of sites, such as polygonal sites,

circular disks, and spline curves. The combinatorial structure of the Voronoi diagram is

computed without the construction and manipulation of bisector curves. However, being

based on a medial-axis algorithm, their approach supports only diagrams induced by the

4 Chapter 1. Introduction

Euclidean metric.

The ubiquitous sweep-line paradigm, introduced by Bentley and Ottmann [BO79], was

adapted by Fortune for the construction of Voronoi diagrams of points in the plane [For87].

The sweep technique proved useful also for constructing other types of Voronoi diagrams,

such as order-k Voronoi diagrams [Ros91] and Voronoi diagrams of circles in the Euclidean

plane [JKM+06].

Another important and popular technique is the incremental construction [GS78], which

together with randomization [CS89] yield an O(n logn) algorithm for constructing Voronoi

diagrams [GKS92]. This technique was used to attain algorithms for various types of Voronoi

diagrams, and allowed relaxation of certain requirements on bisector curves in the definition

of abstract Voronoi diagrams, while keeping an optimal time complexity [KY03,KMM93].

Lower or upper envelopes of surfaces constitute a fundamental structure in computational

geometry. They are frequently used to solve various problems including: hidden surface

removal, computing Hausdorff distances, and more [AS00, SA95]. Agarwal et al. presented

an efficient and simple divide-and-conquer algorithm for constructing envelopes in three

dimensions [ASS96]. The theoretical worst-case time complexity of constructing the envelope

of n “well-behaved” surfaces in three dimensions using the divide-and-conquer algorithm is

O(n2+ε).3 This near-quadratic running time can arise also in cases of envelopes of linear

complexity. This is also an upper bound, almost tight in the worst case, on the combinatorial

complexity of the envelope.

Edelsbrunner and Seidel [ES86] observed the connection between Voronoi diagrams in R
d

and lower envelopes of the corresponding distance functions to the sites in R
d+1, yielding a

very general approach for computing Voronoi diagrams. For example, consider the Voronoi

diagram of a set of points in the plane, then, the connection is as follows: for each point site

p = (xp, yp) we consider the paraboloid Pp(x, y) = (x − xp)
2 + (y − yp)

2. The minimization

diagram of the lower envelope of the paraboloids, which is the vertical projection of the lower

envelope onto the plane, corresponds to the Voronoi diagram of the points.

Other algorithms include Yap’s algorithm for segments and circular arcs [Yap87], an

optimal algorithm for the construction of weighted Voronoi diagrams [AE84]. The interested

reader is referred to the book by Okabe et al. [OBSC00] and to the survey by Aurenhammer

and Klein [AK00] for more information.

3A bound of the form O(f(n) ·nε) means that the actual upper bound is Cεf(n) ·nε, for any ε > 0, where
Cε is a constant that depends on ε, and generally approaches infinity as ε goes to 0.

5

Software

The Computational Geometry Algorithms Library (Cgal) [2] is an open-source C++ library

of efficient and reliable geometric algorithms.4 It follows the exact geometric computation

paradigm [Yap04, YD95] to achieve robustness with exact results. Cgal contains imple-

mentations of algorithms for computing the dual Delaunay graphs to standard Voronoi

diagrams, Apollonius diagrams, and segment Voronoi diagrams [BDP+02, EK06, Kar04].

Moreover, Voronoi diagrams of ellipses can be computed using the same Cgal frame-

work [ETT08]. Other exact implementations include the construction of segment Voronoi

diagrams in Leda [BMS94] and the implementation of the randomized algorithm for con-

structing abstract Voronoi diagrams in Leda [See94].

Approximated alternatives include the Vroni code for computing two-dimensional Vo-

ronoi diagrams of points and line segments [Hel01], the use of the Graphics Processing Unit

(GPU) to visualize Voronoi diagrams [HKL+99,Nie08], and more.

A large number of the implementations for constructing Voronoi diagrams use the incre-

mental construction paradigm. The time complexity achieved by the incremental construc-

tion relies on the fact that most changes applied to the diagram are local with respect to

the location of the inserted site. This assumption usually implies that the diagrams are of

linear size. Typically, the time complexity of constructing a Voronoi diagram that has linear

complexity, using the above algorithms, is nearly linear.

One of the main packages included in Cgal is the Arrangement on surface 2 package,

which supports construction and maintenance of arrangements of bounded or unbounded

curves embedded on certain two-dimensional parametric surfaces in three-dimensions and

different operations on them [WFZH08,WFZH07,BFH+07]. The Arrangement on surface 2

package is robust when using exact arithmetic and handles all degenerate input.

Cgal contains a robust and efficient implementation of the divide-and-conquer algo-

rithm mentioned earlier for constructing envelopes of surfaces in three dimensions [MWZ08,

Mey06a]. The implementation, provided in Cgal’s Envelope 3 package, relies heavily on

arrangements and algorithms from the Arrangement on surface 2 package. As mentioned

above, the divide-and-conquer algorithm achieves a worst-case near-quadratic running time.

This fact poses an obstacle when attempting to utilize this algorithm for the construction

of Voronoi diagrams that have linear complexity, as we aim for algorithms that run in near-

linear time.

4Throughout the thesis a number in brackets (e.g., [4]) refers to the link list on page 85, and an alphanu-
meric string in brackets (e.g., [FSH08a]) is a standard bibliographic reference.

6 Chapter 1. Introduction

(a) (b) (c) (d)

Figure 1.2: Various Voronoi diagrams computed with our software. (For the parameters of sites in
each diagram, see Table 1.1.) (a) A standard Voronoi diagram (point sites with L2 metric). (b) An
additively-weighted Voronoi (Apollonius) diagram with disk centers as sites and disk radii as weights.
(c) A Möbius diagram with disk centers as sites. The distance from every point on the boundary of a
disk to its corresponding site is zero. (d) A Voronoi diagram of segments and points. The sites in (b),
(c), and (d) are illustrated with dashed curves. The figures in this thesis are best viewed in color.

Contribution of the Thesis

We present a general framework for constructing various two-dimensional Voronoi diagrams,

exploiting the efficient, robust, and general-purpose envelope code of Cgal. We have ex-

tended the Envelope 3 package to work together with the new Arrangement on surface 2

package and created spherical geodesic Voronoi diagrams based on our self-developed code

for constructing arrangements of geodesic arcs on the sphere. The work in this context was

presented at the 24th European Workshop on Computational Geometry [FSH08a] and in the

multimedia session of the 24th Annual Symposium on Computational Geometry [FSH08b];

for more information on the computation of arrangements of geodesic arcs on the sphere and

applications see Efi Fogel’s thesis [Fog08].

Chapter 2 gives the necessary background and basic definitions. Chapter 3 describes the

adaptation of the divide-and-conquer algorithm for envelopes to Voronoi diagrams embed-

ded on two-dimensional parametric surfaces in 3-space, and the elimination of the above

complexity obstacle using randomization in the divide step. We describe the software in-

terface between the construction of Voronoi diagrams and the envelope code of Cgal. An

analysis by Micha Sharir for the expected time complexity of constructing lower envelopes in

this randomized divide-and-conquer setup can be found in Section 3.4. Chapter 4 presents

details about our implementation of a large set of Voronoi diagrams with different properties

using our framework. The section demonstrates the generality of the framework and gives

information on techniques we have applied to speed-up the exact (and costly) computation

in practice. In Chapter 5, we thoroughly discuss the advantages and the limitations of our

7

Table 1.1: Types of Voronoi diagrams currently supported by our implementation, and their bisector
classes.

Name Sites Distance function Class of bisectors

Standard Voronoi

diagram

points pi ||x− pi|| lines

Power diagram disks (with center ci and
radius ri)

√

(x− ci)2 − r2i

2-point

triangle-area

Voronoi diagram

pairs of points {pi, qi} area of △xpiqi pairs of lines

Apollonius

diagram

points pi and weights wi ||x− pi|| − wi
hyperbolic arcs

Möbius diagram points pi with scalars
λi, µi

λi(x− pi)
2 − µi

circles and lines

Anisotropic

diagram

points pi, with pos-
itive definite matrices
Mi, and scalars πi

(x−pi)
tMi(x−pi)−

πi

conic arcs

Voronoi diagram

of linear objects

interior-disjoint points,
segments, rays, or lines

Euclidean distance piecewise algebraic curves
composed of line segments
and parabolic arcs

Spherical Voronoi

diagram

points on a sphere geodesic distance arcs of great circles
(geodesic arcs)

Power diagram on

a sphere

circles on a sphere “spherical” power
distancea

a Given a point p and a circle with center q and radius r on the sphere, the spherical power
“proximity” between p and the circle is defined to be cos d(p,q)

cos r where d(p, q) is the geodesic
distance between p and q [Sug02].

framework. We also show experimental results, demonstrating the randomization effect on

the running time. We present an application of our framework to solve the problem of com-

puting a minimum-width annulus of a set of disks in the plane, which exploits the generality

and the flexibility of the framework in Chapter 6; a short introduction to the minimum-width

annulus problem is given in Section 6.1. The solution requires the computation of two Vo-

ronoi diagrams of two different types, and of the overlay of the two diagrams. We presented

an extended abstract of this work of computing a minimum-width annulus of disks at the

25th European Workshop on Computational Geometry [SH09]. An extended abstract of the

thesis will be presented on the 6th annual International Symposium on Voronoi Diagrams in

science and engineering (ISVD) [SSH09].

The major strength of our approach is its completeness, robustness, and generality, that

is, the ability to handle degenerate input, the agility to produce exact results, and the capa-

bility to construct diverse types of Voronoi diagrams. The code is designed to successfully

handle degenerate input, while exploiting the synergy between generic programming and

8 Chapter 1. Introduction

exact geometric computing, and the divide-and-conquer framework to construct Voronoi

diagrams. Theoretically, the randomized divide-and-conquer envelope approach for comput-

ing Voronoi diagrams is efficient and it is asymptotically comparable to other (near-)optimal

methods. However, the method uses constructions of bisectors and Voronoi vertices as ele-

mentary building blocks, and they must be exact, which makes the concrete running time of

our exact implementation inferior to those of existing implementations of various dedicated

(specific diagram type) implementations.

Our software can support practically any kind

of Voronoi diagrams, provided that the user sup-

plies a set of basic procedures for manipulating a

small number of sites and their bisectors; see Sec-

tion 3.3 and Chapter 4 for details on how to use

the framework to compute new types of Voronoi

diagrams. Table 1.1 summarizes the types of diagrams that are currently supported by our

implementation. Figure 1.2 illustrates several types of planar Voronoi diagrams computed by

our software. The figure above shows two types of Voronoi diagrams on the sphere computed

with our software; its left part shows a spherical Voronoi diagram of 14 points and its right

part shows a spherical power diagram of 10 circles. Both diagrams are composed of geodesic

arcs.5

Cgal had a significant impact on this thesis. All the software components involved in

this thesis are based on Cgal and are developed according to its guidelines. The developed

software adheres to the generic programming paradigm and follows the exact geometric

computation paradigm, similar to other existing Cgal components. Nonetheless, this thesis

also had an influence on Cgal. The results of this thesis contributed to Cgal in the form

of improving existing components and in developing new components that are planned to

be integrated into a future public release of Cgal. This includes, for example, contributing

to the development of the new Arrangement on surface 2 package, extending the Envelope 3

package to support envelopes embedded on two-dimensional surfaces, and enhancing existing

traits classes for the arrangement package and the arrangement package itself. The code

presented in this thesis is packed into a package, in the form of a Cgal package, named

EnvelopeVoronoi 2.

5The figure and other 3D figures in this thesis were created using an interactive viewer for an extended
Vrml format called player, which is based on a Scene Graph Algorithm Library called SGAL.

2
Preliminaries

This chapter provides background material and definitions required for the understanding of

this thesis. Sections 2.1 and 2.2 provide general definitions for Voronoi diagrams and describe

the divide-and-conquer algorithm for constructing envelopes of surfaces in three-dimensions.

Basic software components and technical background, the implementations included in this

thesis are built upon, are reviewed in Sections 2.3 and 2.4.

2.1 Voronoi Diagrams

Let O = {o1, . . . , on} be a set of n objects, referred to as Voronoi sites, in an ambient

space S. Let ρ : O × S → R be a distance function between Voronoi sites and points in the

space. The Voronoi diagram Vorρ(O) of the set O with respect to the distance function ρ

is defined to be the partition of the space S into maximally connected cells, where each cell

consists of points that are closer to one particular site (or a set of sites) than to any other

site. Formally, every point p ∈ S lies in a cell corresponding to a set of sites I ⊆ O if, and

only if, ρ(oi, p) < ρ(oj, p) for every oi ∈ I, oj /∈ I, and ρ(oi, p) = ρ(oj , p) for every oi, oj ∈ I.

Likewise, the farthest Voronoi diagram is the partition of the space into maximally connected

cells, where each cell consists of points that are farther from one site than from the other

9

10 Chapter 2. Preliminaries

sites.

All Voronoi diagrams can be defined by adjusting the parameters O, ρ, and S as required.

Defining the standard Voronoi diagram, for example, amounts to the selection of a set of

points in the plane as the set of sites, the selection of the plane itself as the ambient space,

and the selection of the Euclidean distance between two points in the plane as the distance

function. The power diagram on the sphere, yet another example, is defined by choosing O

to be a set of circles on the unit sphere, S to be the sphere, and ρ to be the spherical power

distance.

In certain cases, the distance to a site may depend on various parameters associated

with the site. For example, Möbius diagrams’ distance depends on two positive scalars,

and anisotropic Voronoi diagrams’ distance depends on one positive definite matrix and one

positive scalar. Table 1.1 lists some of the more prevalent two-dimensional Voronoi diagrams

together with their respective types of sites, ambient spaces, and distance functions.

The bisector B(oi, oj) of two Voronoi sites oi and oj is the locus of points that have an

equal distance to both sites, that is

B(oi, oj) = {p ∈ S | ρ(oi, p) = ρ(oj , p)}.

From here on we refer only to ambient spaces that are two-dimensional, parameterizable,

and orientable (e. g., a plane, a sphere, a torus, etc.)

The above definition is the more classical definition conceived from the need to divide

the space into areas of influence or dominance. The sites are, of course, the dominating

entities and the distance functions correspond to the measure of dominance of each site on

points of the ambient space. In addition to this application-inspired definition an alternative

implementation-oriented definition arose.

Considering the plane as the ambient space, Voronoi diagrams were defined through

their bisecting curves instead of the distance function. Such diagrams that also comply to

additional restrictions are referred to as abstract Voronoi diagrams [Kle89]. In this definition,

a set B is called a bisecting curve if, and only if, B is homeomorphic to the open interval (0, 1)

and closed as a subset of R2. A bisecting curve B partitions the plane into two unbounded

areas. For each pair of sites oi and oj we assume that B(oi, oj) = B(oj , oi) is a bisecting

curve, and denote by D(oi, oj) and D(oj, oi) the two areas obtained in the partition induced

by the bisecting curve. (One of the areas is known to be D(oi, oj) and one is known to be

2.2. Divide-and-Conquer Algorithm for Envelopes 11

D(oj, oi).) The Voronoi diagram Vor(O) is defined as follows:

Reg(oi, oj) =

{

D(oi, oj) ∪ B(oi, oj), if i < j

D(oi, oj) if i > j
(2.1)

Reg(oi, O) =
⋂

oj∈O,j 6=i

Reg(oi, oj) (2.2)

Vor(O) =
⋃

oi∈O

∂Reg(oi, O) (2.3)

Abstract Voronoi diagrams do not cover the entire variety of Voronoi diagrams discussed

in this thesis. For example, Möbius diagrams and anisotropic diagrams are not abstract

Voronoi diagrams. In addition, the classical definition of abstract Voronoi diagrams does not

include the cases of different ambient spaces, such as two-dimensional parametric surfaces.

2.2 Divide-and-Conquer Algorithm for Envelopes

Given a set of bivariate functions (partially) defined over a two-dimensional domain S,
F = {f1, . . . , fn}, fi : S → R , its lower envelope EF : S → R is defined to be their

point-wise minimum:

EF(x) = min
i

fi(x).

The minimization diagram MF of F is the subdivision of S into maximal relatively-

open connected cells, such that the function (or the set of functions) that attains the lower

envelope over a specific cell of the subdivision is the same. Changing “min” to “max” in the

definition above results in the corresponding definitions for upper envelope and maximization

diagram.

Agarwal, Schwarzkopf, and Sharir presented a simple and efficient divide-and-conquer al-

gorithm for the construction of envelopes of bivariate functions defined over the plane [ASS96].

The algorithm is essentially an application of the overlay of two-dimensional minimization di-

agrams. They showed that the combinatorial complexity of such an overlay of two envelopes

of n “well-behaved” functions is O(n2+ε); see [AS00] for a full description of the assump-

tions on such functions. An alternative proof was given by Koltun and Sharir [KS03b]. As

acceptable in the field of computational geometry they assumed that the input is given in

general position. This assumption creates a gap between the theoretical divide-and-conquer

algorithm for constructing envelopes in three-dimensions and its practical anticipated imple-

mentation.

12 Chapter 2. Preliminaries

Meyerovitch presented an implementation for the above algorithm for constructing en-

velopes of functions defined over the plane [Mey06a, Mey06b], which handles all inputs,

including all degenerate situations; see more details in Section 2.3 below. Following is a

description of the algorithm in the context of lower envelopes construction. The description

is easily adapted to the case of upper envelopes as well. The input for the algorithm is a set

F of bivariate functions, which could be partially defined, and the result is the minimization

diagram MF of the set of functions.

The envelope of a single function comprises the function itself. Hence, the minimization

diagram is constructed by projecting the boundary of the domain of the function onto R
2.

In the case where the set of functions consists of more than one function we partition the

set into two sets of functions of roughly equal size F1 and F2, and compute their respective

minimization diagrams M1 and M2, recursively. Every feature — a vertex, an edge, or a

face — of M1 and M2 is labeled with the set of functions that attain the lower envelope over

it. We merge M1 and M2 into the final minimization diagram MF . The merge operation

is composed of three stages:

1. Overlaying M1 and M2 each represented as a planar arrangement to obtain a new

planar arrangement. We use a sweep-based overlay algorithm, during the execution of

which new features are created depending on existing features of both input diagrams;

for example, a new vertex is created by overlaying two intersecting edges from M1

and M2, respectively. The newly created features are labeled with references to the

functions attaining the lower envelopes over both input minimization diagrams.

2. Constructing the minimization diagram over every feature (the vertices, the

edges, and the faces) of the overlay.

If the overlaid features from both minimization diagrams that induce the subject fea-

ture reference no functions then the feature is labeled with the empty set. If only one

feature references a set of functions then the subject feature is labeled with this set of

functions.

The case where both input features reference sets of functions makes our task a non-

trivial one, as we may have to split the feature into several pieces (if it is an edge

or a face). All referenced functions originating from a single minimization diagram

are identified over the subject feature, so we can consider one representative function

from each of the diagrams (M1 and M2). The projected intersection between these

two functions induces the split of the feature into fragments. Each of the resulting

fragments is then labeled with the correct set of functions according to the value

2.3. CGAL and the Arrangement on surface 2 Package 13

obtained by the functions over it (the set of functions originating from M1 or M2 in

case one set obtains a lower value, or the union of both sets in case they obtain an

equal value).

3. Removing redundant features. Neighboring faces in the refined overlay and their

connecting edges can be labeled with identical sets of functions. If this is the case we

compute the union of the redundant faces by removing edges and vertices, which yields

the final minimization diagram.

Assuming that all functions are “well-behaved” (see, e. g., [AS00]), the complexity of the

algorithm is dependant on the complexity of the overlay of the two minimization diagrams.

Therefore, the theoretical worst-case time-complexity for constructing envelopes using the

divide-and-conquer algorithm is O(n2+ε). The actual implementation in Cgal, presented in

Section 2.4, contains speed-ups that expedite the practical running time.

2.3 CGAL and the Arrangement on surface 2 Package

Providing robust, efficient, and general implementations of computational geometry algo-

rithms is a notoriously difficult task. Two prime issues bring up the majority of difficulties.

The first is the general hardship of implementing geometric algorithms while considering

all kinds of degenerate input and boundary situations. Assuming that the given input is

in general position is used to avoid these marginal cases in many geometric algorithms in

theory. The assumption of general position suggests that special or “coincidental” inputs be

discarded; for example, three lines in the plane are assumed not to intersect at a single point.

This discards many cases that appear in practical applications and real-world problems,

and creates a large gap between computational-geometry algorithms in theory and their

implementation.

The second issue is related to robustness and rounding errors. Geometric algorithms in

theory generally follow a computational model named “real RAM” [PS85]. They assume that

all numerical computations are performed with unlimited precision, and require constant

time per operation. In reality this model cannot be realized. Numbers represented by

machines either have limited precision, or require more than constant time per operation, as

native types comprise a fixed number of bits. Inaccurate numerics can impose inconsistent

predicates and constructions, forming unstable geometric algorithms [KMP+08]. Developing

a robust and efficient geometric algorithm under these constraints is a very challenging task

even for a qualified professional.

14 Chapter 2. Preliminaries

Cgal, the Computational Geometry Algorithms Library, was launched in 1996 as a

collaborative effort of several research institutes in Europe and Israel to provide easy access

to efficient, robust, and reliable geometric algorithms and data structures for academic and

industrial use.

Cgal provides various geometric data structures and algorithms like convex hull algo-

rithms, Delaunay triangulations, Voronoi diagrams, Boolean operations on polygons and

polyhedra, arrangements of curves, Minkowski sums of polygons, alpha shapes, search struc-

tures, and more [cga08] [2]. Cgal is used in various fields in academia and industry, such

as computer graphics, scientific visualization, computer-aided design, bioinformatics, motion

planning, and more.

Cgal overcomes the above difficulties by adhering to the exact geometric computation

paradigm [YD95], and by relying on computation with exact number types to achieve robust-

ness. Cgal adheres to the generic programming paradigm (see below) to achieve maximum

flexibility without compromising efficiency.

Generic programming is a programming discipline in which concrete algorithms are grad-

ually lifted over specific required types by describing them in terms of polymorphic abstract

types [Aus99]. The types are provided later at instantiation time of the algorithm as pa-

rameters. This approach empowers the programmer with the ability to write dynamic and

general programs on abstract types, at the expense of code tangibility. Collections of re-

quirements from abstract polymorphic types are referred to as concepts, and specific types

used to instantiate the algorithms are referred to as models.

Templates (or template programming) are C++ language constructs that were designed to

support the generic programming paradigm. They have been found to be extremely useful,

providing C++ programmers with the ability to write static code-generators and perform

static computations (meta-programming), which improves the run-time of non-templated

C++ compiled code while maintaining and even enhancing flexibility. In fact, C++ can

be regarded as a two-level language where each level is Turing-complete; the first level is

the code-generating statically-expanding compile-time consuming template declarations and

meta-programs, and the second level is the “standard” non-templated runtime-consuming

code. For an in-depth discussion of C++ templates we refer the reader to “C++ Templates”

by Vandevoorde and Josuttis [VJ02] and to “Modern C++ Design” by Alexandrescu [Ale01].

Cgal is divided into packages, where each package provides an efficient implementation

of a geometric algorithm (or a family of algorithms) or a useful data-structure, and related

functionalities. Cgal packages are organized in three parts. Geometric data-structures and

algorithms, as just mentioned, are one part. These data structures and algorithms operate

2.3. CGAL and the Arrangement on surface 2 Package 15

on geometric objects like points and segments, and perform geometric tests on them. The

objects and predicates are regrouped in Cgal “Kernels”, which constitute another part of

Cgal. The third part of Cgal is the “Support Library” which offers fundamental utilities

used throughout Cgal; for example, various extensions for the STL [7], Boost [1] and QT

libraries.

The support library also contains classes that represent numbers, referred to as “number

types,” which are used as parameters to Cgal kernel classes. Depending on the problem

(and the input) to be handled, the number types provide a trade-off between efficiency and

accuracy. For example, in some cases the user is able to instantiate a geometric kernel with

a built-in number-type of C++ that represent a discrete (bounded) subset of the rational

numbers, while in other cases he/she has to use a number type that supports all operations

in unlimited precision over the rationals, such as the rational number type CGAL::Gmpq based

on Gmp— Gnu’s Multi Precision library [4].

A leading package of Cgal — both in terms of size (lines of code) and the extent of usage

— is the Arrangement on surface 2 package. Given a set C of curves embedded on a given

two-dimensional surface, the arrangement A(C) is the subdivision of the surface into cells,

induced by the curves of C. Arrangements are defined more generally [BFH+07]. However,

we restrict ourselves here to 2D arrangements, which are supported by Cgal.

The Arrangement on surface 2 package is based on the earlier Arrangement 2 package

that supported planar arrangements of bounded and unbounded curves [FWH04,WFZH07].

The Arrangement on surface 2 package enables the user to construct and maintain arrange-

ments embedded on certain two-dimensional orientable parametric surfaces [BFH+07]. In

addition to the ability to construct arrangements, the package supports various operations

on arrangements, including traversing an arrangement, performing point-location queries on

an arrangement, and overlaying two arrangements [WFZH08].

The arrangement package ofCgal achieves robustness and exact results when using exact

arithmetic types, and handles all kinds of degenerate situations. It supports two algorithmic

frameworks, that is the sweep-line framework and the zone-computation framework. Both

are used in various geometric algorithms. For example, the former is used for Boolean-set

operations between linear or general polygons in the plane, and the latter is used for inserting

a curve into an existing arrangement of curves.

The arrangement package follows the generic programing paradigm through the use of

traits classes, which enable the separation of the geometric and the topological aspects of

the computation. Models that describe behaviors are referred to as traits classes [Mye97].

A traits class is passed as a parameter to a templated method or a class template and

16 Chapter 2. Preliminaries

should provide certain predefined types and methods that enable the operation of a specific

algorithm. For example, in our case, a geometry traits class for the Arrangement on surface 2

class (see below) should contain types that represent points and x-monotone curves, a method

to compare the x-coordinates of two points, etc. This decouples the implementation of the

algorithms contained in the Arrangement on surface 2 package from the specific geometric

computations, and enables the user of the package to create different types of arrangements

for different classes of curves.

The main class of the package — Arrangement on surface 2 — is parameterized with

two template classes, a geometry-traits class and a topology-traits class. The geometry-

traits class controls the geometric aspects of the arrangement, namely, it defines associated

geometric types (points, curves, and x-monotone curves) for the specific family of curves

and provides the arrangement with required geometric operations and predicates on those

types (e. g., intersecting two x-monotone curves, determining whether a point lies below

or above a curve, etc.). The topology-traits class, as its name suggests, is responsible for

the topological (abstract, graph-like) representation of the arrangement, namely, keeping

the correct relations between the arrangement’s cells (faces, edges, and vertices) and their

neighboring cells with respect to the embedding surface.

The package is designed for maximum efficiency and flexibility, where flexibility refers to

both adaptability and extensibility. In other words, the arrangement package was designed

to have the ability to be incorporated into existing user code and the ability to be enhanced

with additional code.

2.4 Exact Construction of Envelopes in CGAL

The Envelope 3 package, which implements the algorithm mentioned in Section 2.2 for com-

puting the lower (or the upper) envelope of a set of surfaces in three-dimensions [MWZ08],

is strongly built-upon the Arrangement 2 package. There is one difference between the de-

scription of the algorithm in Section 2.2 and the implementation of the Envelope 3 package,

that is, the support of Envelope 3 in constructing the envelope of general three-dimensional

surfaces by the decomposition of the surfaces into bivariate (partially defined) functions.

The package decouples the topology-related computation from the geometry-related compu-

tation, making its code generic and easy to reuse and adapt.

The code insures stability, namely, it handles all possible degenerate situations in the case

of general surfaces; among those are vertical surfaces, overlapping (and partially overlapping)

surfaces, and a common intersection point of more than three surfaces. While insuring

2.4. Exact Construction of Envelopes in CGAL 17

stability, the number of calls to the exact (and slow) geometric predicates is minimized by

propagating pre-computed information about the structure of the envelope to neighboring

cells in the merge step of the algorithm.

The Envelope 3 package defines a new concept for a traits class for computing envelopes

of surfaces in three-dimensions. The EnvelopeTraits 3 refines the ArrangementTraits 2 con-

cept, adding types and predicates that are used to compute envelopes. Every model of the

EnvelopeTraits 3 has to supply the ability of constructing an arrangement from the projected

intersection curves and boundary curves of the given surfaces. Available traits classes for the

Envelope 3 package include traits classes for computing the envelopes of triangles, spheres,

planes, and quadrics [BM07,Mey06a].

The implementation mainly makes use of two operations supported by the arrangement

package: (i) sweep-based overlay operation, which is used to overlay two minimization di-

agrams, and (ii) zone computation-based insertion operation, which is used to insert pro-

jected intersection curves (of the surfaces) that partition cells of the refined arrangement.

The new Arrangement on surface 2 package extends the aforementioned operations, that is,

the sweep-line and zone-computation, to support arrangements on two-dimensional para-

metric surfaces. Thus, we extended the Envelope 3 code to work together with the new

Arrangement on surface 2 package, and handle minimization diagrams that are embedded

on two-dimensional parametric surfaces.

Though computing lower envelopes of functions defined over two-dimensional orientable

parametric surfaces has its own significance, we concentrate on describing how this ability

is exploited to compute Voronoi diagrams on surfaces; see Section 3.3 for more details and

Section 4.2 for a concrete example of computing Voronoi diagrams on the sphere.

18 Chapter 2. Preliminaries

3
From Envelopes to Voronoi Diagrams

This chapter describes the adaptation of the algorithm for constructing envelopes of bivariate

functions to the computation of general Voronoi diagrams. Section 3.1 describes the way

the algorithm works in the context of Voronoi diagrams. Section 3.2 discusses theoretical

aspects of the algorithm. It shows that through randomization, the expected running time of

the algorithm is near-optimal in the worst case. Section 3.3 provides comprehensive details

on the software interface that allows the computation of general two-dimensional Voronoi

diagrams through the construction of envelopes in Cgal.

3.1 Divide-and-Conquer Algorithm for Voronoi Dia-

grams

There is a strong connection between Voronoi diagrams in d-dimensions and envelopes of

functions in (d+1)-dimensions, which was first observed by Edelsbrunner and Seidel [ES86].

Their main revelation was the relation between Euclidean Voronoi diagrams of point-sets

in R
d (and their higher-order Voronoi diagrams) to arrangements of hyperplanes in R

d+1,

which yielded a very general approach for computing various types of Voronoi diagrams.

19

20 Chapter 3. From Envelopes to Voronoi Diagrams

We demonstrate the connection between Voronoi diagrams and envelopes in the planar

case. This connection can be easily established also for two-dimensional parametric surfaces

as the embedding spaces. Let O = {o1, . . . , on} be a set of n Voronoi sites in the plane, and

let ρ : O × R
2 → R be a distance function between Voronoi sites and points in the plane.

Recalling the definitions of Voronoi diagrams and envelopes from Section 2.1 and Section 2.2,

it is clear that if we define fi : R
2 → R to be fi(x) = ρ(oi, x), for each i = 1, . . . , n, then the

minimization diagram of {f1, . . . , fn} corresponds to the Voronoi diagram of O. Likewise,

the respective maximization diagram corresponds to the farthest Voronoi diagram of O.

(a) (b) (c)

(d) (e)

Figure 3.1: The merge step of the divide-and-conquer algorithm for computing Voronoi diagrams.
(a) The first Voronoi diagram, Vorρ(S1). (b) The second Voronoi diagram, Vorρ(S2). (c) The overlay
of the two diagrams. (d) The refined overlay. Each face is partitioned to regions that are closer to sites
from S1 and region that are closer to sites from S2. (e) The final diagram obtained after the removal
of redundant features from the refined overlay.

As we aspire to use envelopes to compute Voronoi diagrams, we “translate” below the

terms used in envelopes construction to terms used in Voronoi diagrams computation. This

translation will be useful in Section 3.3 where we define the interface for computing Voronoi

diagrams. The interface is simpler than the given Cgal interface for computing envelopes.

This allows the user of our framework to create a new type of Voronoi diagrams by providing

certain functions and types without the knowledge of the underlying envelope algorithm.

Each Voronoi site is transformed into a bivariate function defined over the whole two-

3.2. Theoretical Aspects 21

Figure 3.2: A worst-case quadratic-size example of a multiplicatively-weighted Voronoi diagram with
12 sites, based on an example of Aurenhammer and Edelsbrunner [AE84]. The diagram was computed
with our software.

dimensional domain, as opposed to envelopes of general surfaces that can be partially defined.

The bisector of two Voronoi sites is the locus of points that have an equal distance to both

sites (see Section 2.1), thus, the projection of the intersection between two functions that

correspond to two Voronoi sites is the bisector of the two sites.

The adapted algorithm for Voronoi diagrams computation follows. We split the set of

sites into two disjoint subsets S1 and S2 of (roughly) equal size, construct their respective

Voronoi diagrams Vorρ(S1) and Vorρ(S2), recursively, and then merge the two diagrams to

obtain Vorρ(S).

The merge step begins with overlaying the two diagrams. For each face f of the overlay,

all its points have a fixed pair of nearest sites s1 and s2 from S1 and S2, respectively, where

the bisector between s1 and s2 (restricted to f) partitions f into its portion of points nearer

to s1 and the complementary portion of points nearer to s2. This results with portions of

the final Voronoi cells. Each feature of the refined overlay is labeled with the sites nearest

to it.

Finally, redundant features are removed and subcells of the same cell are stitched to-

gether, to yield the combined final diagram. Figure 3.1 illustrates the process of merging

two Voronoi diagrams of points (a red one and a blue one), to yield the final Voronoi diagram

of the unified set of points.

3.2 Theoretical Aspects

Recall that the asymptotic worst-case time complexity of the divide-and-conquer envelope

algorithm (under the natural assumption that the functions have “constant description com-

plexity”) is O(n2+ε), for any ε > 0. Indeed, there are planar Voronoi diagrams that obtain

quadratic complexity, and for which this construction is nearly worst-case optimal. For ex-

ample, Figure 3.2 illustrates the worst-case behavior of multiplicatively-weighted Voronoi

22 Chapter 3. From Envelopes to Voronoi Diagrams

diagrams, based on an example by Aurenhammer and Edelsbrunner [AE84]. However, for

cases where the complexity of the diagram is sub-quadratic (for most of the cases, linear),

we would like the algorithm to obtain a sub-quadratic (or near-linear) running time.

The complexity of the merge step of the algorithm directly depends on the complexity of

the overlay of the two sub-diagrams. (The cost of the best general algorithm for constructing

the overlay is larger by a logarithmic factor than the combined complexity of the input

diagrams and of the overlay.) Careless partition of the input sites into two subsets can

dramatically slow down the computation. For example, consider the following point-set

input to the standard L2-diagram in the plane, {(i, i)}n/2i=1 ∪ {(−i, i)}n/2i=1. If we partition the

set into two subsets, to the left and to the right of the y-axis, then in the final merge step,

the overlay of the two sub-diagrams has Θ(n2) complexity. Hence the algorithm runs in

Ω(n2) time, whereas the complexity of the final diagram is only Θ(n); see Figure 5.1 (a) for

an illustration and Section 5.1 for more details.

Micha Sharir has shown that if the partitioning of the sites into two subsets is done

randomly, then the expected complexity of the overlay is comparable with the maximum

complexity of the diagram for essentially any kind of sites and distance functions, and for

any possible input. Sharir’s proof is given in Section 3.4. Here we cite the theorem and point

to relevant consequences of it.

Theorem 3.1. Consider a specific type of two-dimensional Voronoi diagrams, so that the

worst-case complexity of the diagram of any set of at most n sites is F (n). Let S be a set

of n sites. If we randomly split S into two subsets S1 and S2, by choosing at random for

each site, with equal probability, the subset it belongs to, then the expected complexity of the

overlay of the Voronoi diagram of S1 with the Voronoi diagram of S2 is O(F (n)).

As we aim to compute Voronoi diagrams of a large variety of types, we use a sweep-line

based algorithm that exhibits good practical performance, and incurs a mere logarithmic

factor over the optimal computing time, namely O(F (n) logn). In particular we use the

overlay operation provided by the Arrangement on surface 2 package.

Corollary 3.2. For a specific type of two-dimensional Voronoi diagrams, so that the worst-

case complexity of the diagram of any set of at most n sites is O(n), the divide-and-conquer

envelope algorithm computes it in expected O(n log2 n) time. If the worst-case complex-

ity F (n) is Ω(n1+ε) then the expected running time is O(F (n) logn).

When the diagram is a convex subdivision, one can carry out the merge step more

efficiently, in linear O(F (n)) expected time using the procedure described by Guibas and

Seidel [GS87]. In particular, we have:

3.3. Robust Implementation with CGAL 23

Corollary 3.3. The L2-Voronoi diagram of n points in the plane, or the power diagram

of n disks in the plane, can be computed using the randomized divide-and-conquer envelope

algorithm in expected optimal O(n logn) time.

3.3 Robust Implementation with CGAL

This section describes the software interface between the computation of Voronoi diagrams

and the construction of envelopes. The reduced and convenient interface consists of several

functions, each operating on a small number of user-defined types (Voronoi sites or bisector

curves). A user wishing to add a new type of diagrams does not have to know the algorithmic

details of constructing minimization diagrams. The section contains technical details on

the types and functions that need to be supplied by the user of the framework in order

to implement a new type of Voronoi diagrams. We assume in this section, as well as in

Chapter 4 below, some familiarity of the reader with the C++ programming language [Str97]

and the generic programming paradigm [Aus99].

The Envelope 3 package of Cgal is general and handles surfaces having two-dimensional

intersections, hence we can compute Voronoi diagrams composed of two-dimensional bisec-

tors.1 In the case of two-dimensional bisectors, the merge step of the algorithm is almost

identical to the case of one-dimensional bisectors, only that each face of the overlay can

be split and labeled with multiple Voronoi sites. For the computation of Voronoi diagrams

having two-dimensional bisectors we advise the user to directly use the Envelope 3 pack-

age [MWZ08]. (Section 4.1.3 gives a detailed example of implementing a Voronoi diagram

with two-dimensional bisectors.)

Nevertheless, most types of Voronoi diagrams have only one-dimensional bisectors, and

are generally simpler than envelopes of general functions. For example, abstract Voronoi

diagrams (Section 2.1) require that each side of a bisector will be dominated by one of the

sites. Given a dominant site on one side of the bisector, the other site is the dominant site

on the other side. We reduced and simplified the interface required for the implementation

of new types of Voronoi diagrams with one-dimensional bisectors.

We require the user of our framework to define a set of geometric types and operations

that will be used by the algorithm. This way the user can adapt the algorithm to com-

pute the desired type of Voronoi diagrams. Our algorithm is parameterized with a traits

class [Mye97]. A traits class should provide certain predefined types and methods, and is

1An example of such a diagram is the Voronoi diagram of points with respect to the L1-metric, in which
two point sites can have a two-dimensional bisector.

24 Chapter 3. From Envelopes to Voronoi Diagrams

passed as a parameter to a class template. In our case, the algorithm is the class tem-

plate, which accepts a traits class that encapsulates the geometric types and the geometric

operations that the algorithm requires. The concept of the traits class for our Voronoi di-

agrams construction algorithm is called EnvelopeVoronoiTraits 2 . Table 3.1 summarizes the

requirements of EnvelopeVoronoiTraits 2 for types and function objects (also referred to as

“functors”).

The first step in creating a new type of Voronoi diagrams is to define the embedding

surface of the diagram. The creator of the traits class picks the embedding surface of the

Voronoi diagram by defining the Topology traits type, which encapsulates the topology of the

surface on which the diagram is embedded. The topology traits class is a standard require-

ment by the Arrangement on surface 2 package [BFH+07]. Currently implemented topology-

traits classes in the Arrangement on surface 2 package include topology traits classes for the

bounded or unbounded plane, for elliptic quadrics, for ring Dupin cyclides that generalize

tori, and a specially tailored topology-traits class for the sphere [FSH08a].

The EnvelopeVoronoiTraits 2 concept refines the ArrangementTraits 2 concept, defined

in the Arrangement on surface 2 package. Models of the ArrangementTraits 2 concept are

geometry-traits classes that enable the Arrangement on surface 2 package to robustly con-

struct, maintain, traverse, and query two-dimensional arrangements. The process of com-

puting Voronoi diagrams in our approach requires these predicates and operations for the

creation and manipulation of bisector curves of pairs of Voronoi sites. A Voronoi site is

represented by the user-defined Site 2 type.

Given two Site 2 variables and an output iterator, the Construct bisector 2 functor

returns a sequence of objects of type X monotone curve 2 that together form the bisector

of the two Voronoi sites. If the bisector between the two sites does not exist, the function

returns an empty sequence.2

Other required functors are proximity predicates. Each proximity predicate is given a set

of points P in the domain (e. g., an edge) and two Voronoi sites, and should indicate which

of the sites dominates P . The Compare distance above 2 functor accepts two site objects

and an x-monotone curve, which is part of their bisector, and indicates which site dominates

the region above the x-monotone curve, where “above” is defined to be the region to the left

of the x-monotone curve when it is traversed from the xy-lexicographically smaller endpoint

to the xy-lexicographically larger endpoint. The framework utilizes the fact that each of the

sites dominates one side of the bisector to implement the “below” version of the functor. If

2There are cases where there is no bisector between two Voronoi sites. For example, two Apollonius sites
where one is completely contained inside the other have no bisector.

3
.3
.
R
o
bu
st

Im
p
lem

en
ta
tio

n
w
ith

C
G
A
L

25

T
ab

le
3.1:

R
eq
u
ired

typ
es

an
d
fu
n
ctors

by
th
e
E
n
v
elo

p
eV

o
ro
n
o
iT
ra
its

2
con

cep
t.

C
o
m
p
a
r
i
s
o
n
r
e
s
u
l
t

is
an

existin
g
C
g
a
l
typ

e.Name Input Output Description

Site 2 — — A type that represents a Voronoi site.

Construct bisector 2 Two Site 2 objects An output iterator
with values of type of
X monotone curve 2

Returns X monotone curve 2 objects
that together form the bisector of the
two input sites.

Compare distance above 2 Two Site 2 objects and
an X monotone curve 2

Comparison result Determines which of the given Voro-
noi sites is closer to the area “above”
the given x-monotone curve, where
“above” is the area that lies to its left
when the curve is traversed from its
xy-lexicographically smaller end to its
xy-lexicographically larger end.

Compare distance at point 2 Two Site 2 objects and
a Point 2

Comparison result Determines which of the given Voronoi
sites is closer to the given point.

Compare dominance 2 Two Site 2 objects Comparison result Determines which of the sites domi-
nates the other in case that there is
no bisector between the two sites.

Construct point on x mono-

tone 2

X monotone curve 2 Point 2 Constructs an interior point on the
given x-monotone curve.

26 Chapter 3. From Envelopes to Voronoi Diagrams

there is no bisector between the two sites then the Compare dominance 2 functor is used to

indicate which of the sites dominates the other.

The Compare distance at point 2 functor is a general proximity predicate that indicates

which site (of two sites) dominates a given point in the two-dimensional domain. The

functor is used together with the Construct point on x monotone 2 functor that constructs

an interior point on a given x-monotone curve.

After the user created a model class that satisfies all the requirements of the Envelope-

VoronoiTraits 2 concept, he/she can call the function CGAL::voronoi 2 to compute the Vo-

ronoi diagram of a sequences of sites, or the function CGAL::farthest voronoi 2 to compute

the respective farthest-site Voronoi diagram. The Voronoi 2 to Envelope 3 adaptor class is

used to adapt the Voronoi traits class to a full Envelope 3 traits class [MWZ08].

3.4 Randomizing for Optimality

For completeness, we conclude this chapter with the proof by Sharir of Theorem 3.1 (see

Section 3.2) and a generalization of it.

Theorem 3.1. Consider a specific type of two-dimensional Voronoi diagrams, so that

the worst-case complexity of the diagram of any set of at most n sites is F (n). Let S be a

set of n sites. If we randomly split S into two subsets S1 and S2, by choosing at random for

each site, with equal probability, the subset it belongs to, then the expected complexity of the

overlay of the Voronoi diagram of S1 with the Voronoi diagram of S2 is O(F (n)).

Proof. Each vertex of the overlay is either a vertex of Vorρ(S1), a vertex of Vorρ(S2), or a

crossing between an edge of Vorρ(S1) and an edge of Vorρ(S2) (non exclusive disjunction).

The number of vertices of the first two kinds is O(F (n)), so it suffices to bound the expected

number of crossings between edges of Vorρ(S1) and of Vorρ(S2). Such a crossing is a point

u that is defined by four sites, p1, q1 ∈ S1 and p2, q2 ∈ S2, so that u lies on the Voronoi

edge b(p1, q1) of Vorρ(S1) that bounds the cells of p1 and q1, and on the Voronoi edge

b(p2, q2) of Vorρ(S2) that bounds the cells of p2 and q2. Without loss of generality, assume

that ρ(u, p1) = ρ(u, q1) ≤ ρ(u, p2) = ρ(u, q2) (the inequality is strict if we assume general

position).

A simple but crucial observation is that u must also lie on the Voronoi edge between the

cells of p1, q1 in the overall diagram Vorρ(S). Indeed, if this were not the case then there

must exist another site s ∈ S so that u is nearer to s than to p1, q1. But then s cannot

belong to S1, for otherwise it would prevent u from lying on the Voronoi edge of p1, q1. For

3.4. Randomizing for Optimality 27

exactly the same reason, s cannot belong to S2 — it would then prevent u from lying on the

Voronoi edge of p2, q2 in that diagram. This contradiction establishes the claim.

Define the weight ku of u to be the number of sites s satisfying

ρ(u, p1) = ρ(u, q1) < ρ(u, s) < ρ(u, p2) = ρ(u, q2).

Clearly, all these ku sites must be assigned to S1.

In other words, for any crossing point u between two Voronoi edges b(p1, q1), b(p2, q2),

with weight ku (with all the corresponding ku sites being farther from u than p1, q1 and nearer

than p2, q2), u appears as a crossing point in the overlay of Vorρ(S1), Vorρ(S2) if and only

if the following three conditions (or their symmetric counterparts, obtained by reversing the

roles of S1, S2) hold: (i) p1, q1 ∈ S1; (ii) p2, q2 ∈ S2; and (iii) all the ku sites that contribute

to the weight are assigned to S1. This happens with probability
1

2ku+3
.

Hence, if we denote by Nw and N≤w the number of crossings of weight w and the number

of crossings of weight at most w, respectively, the expected number of crossings in the overlay

is
∑

w≥0

Nw

2w+3
= O

(

∑

w≥0

N≤w

2w

)

, (3.1)

where the right-hand side is obtained by substituting Nw = N≤w −N≤w−1, and by a simple

rearrangement of the sum.

We can obtain an upper bound on N≤w using the Clarkson-Shor technique [CS89,Sha03].

Specifically, denote by Nw(n) and N≤w(n) the maximum value of Nw and N≤w taken over

all sets of n sites, respectively. Then, since a crossing is defined by four sites, we have

N≤w(n) = O
(

w4N0(n/w)
)

.

Note that if a crossing u, defined by p1, q1, p2, q2, has weight 0 then p1, q1, p2, q2 are the four

nearest sites to u. The number of such quadruples is thus upper bounded by the complexity

of the fourth-order Voronoi diagram of some set S0 of n/w sites.

We claim that the complexity of the fourth-order Voronoi diagram of n sites is O(F (n)).

Indeed, any quadruple p1, q1, p2, q2 of four nearest sites to some point u can be charged to

a face of the fourth-order diagram (the one whose projection contains u). Each such face

can in turn be charged either to one of its vertices, or to its rightmost point, or to a point

at infinity on one of its edges. Assuming general position, each such boundary point can be

charged at most O(1) times. Now another simple application of the Clarkson-Shor technique

shows that the number of these vertices and boundary points is O(F (n)) — each of them

28 Chapter 3. From Envelopes to Voronoi Diagrams

becomes a feature of the (0-order) Voronoi diagram if we remove a constant number of sites,

which happens with large probability when we sample a constant fraction of the sites.

In other words, we have N≤w(n) = O(w4F (n/w)) = O(w4F (n)). Substituting this

into (3.1), we obtain an upper bound of O(F (n)) on the complexity of the overlay, as claimed.

Remark. The analysis in this section can easily be extended to the case of the lower envelope

of an arbitrary collection of bivariate functions (of constant description complexity). As a

result, we get the following.

Corollary 3.4. Let G be a collection of n bivariate functions of constant description com-

plexity, and let F (m) be an upper bound on the complexity of the lower envelope of any

subcollection of at most m functions. Then the expected complexity of the overlay of the

minimization diagrams of two subcollections G1 and G2, obtained by randomly partition-

ing G, as above, is O(F (n)). Consequently, the lower envelope of G can be constructed

by the above randomized divide-and-conquer technique, in expected time O(F (n) logn), pro-

vided that F (n) = Ω(n1+ε), for some ε > 0. The expected running time is O(n log2 n) when

F (n) = O(n).

4
Examples and Implementation Details

In this chapter we describe the implementation details involved in realizing diverse types

of Voronoi diagrams that can be computed with our framework. Essentially, all discussed

Voronoi diagram can be categorized by two aspects: (i) the embedding space — the un-

bounded plane or the sphere, and (ii) the type of arithmetic used in the implementation

— rational arithmetic or higher-degree algebraic arithmetic. The order of the sections in

the chapter is by the first category, distinguishing between the diagrams embedded in the

plane (Section 4.1) and the diagrams embedded on the sphere (Section 4.2), and then by the

second category.

We have applied optimizations to try and reduce the running time of our software as

much as possible. Section 4.3 presents these optimizations. Our efforts in expediting the

computation concentrate on Voronoi diagrams of points and power diagrams in the plane

(Voronoi diagrams with affine bisectors).

The implementations of the types of Voronoi diagrams presented in this chapter are just

the tip of the iceberg and are aimed to demonstrate the ability of our framework to compute

a wide variety of Voronoi diagrams with different properties. Additional types of Voronoi

diagrams can be (easily) implemented using our framework; see Chapter 7 for suggested

future work.

29

30 Chapter 4. Examples and Implementation Details

4.1 Planar Voronoi Diagrams

Voronoi diagrams embedded in the plane are most useful, and may be the most investigated

type of Voronoi diagrams [OBSC00,AK00]. Historically, the intention to use the Envelope 3

package of Cgal for the computation of general Voronoi diagrams was limited to planar

Voronoi diagrams. In fact, the idea was conceived before the Arrangement on surface 2

package of Cgal had an initial implementation.

4.1.1 Voronoi Diagrams with Linear Bisectors

One of the ways to categorize Voronoi diagrams is by the class of its bisector curves. This

section discusses Voronoi diagrams, the bisectors of which are composed of linear objects.

Linear bisectors enable us to create efficient traits classes based on the arrangement package

of Cgal and the various geometric kernels supplied by Cgal.

The first type of Voronoi diagrams is characterized by the fact that all its bisectors are

single lines in the plane. The second part of this section is an example of the usage of

our framework to compute Voronoi diagrams of two-point sites. Specifically, we compute

the Voronoi diagram induced by the two-point triangle-area distance function of a set of

points [BDD02].

Affine Voronoi Diagrams

Affine Voronoi diagrams is the class of all Voronoi diagrams whose sites have affine bi-

sectors. The power diagram of a set of disks in the plane (defined below) is an affine

Voronoi diagram and is a generalization of the standard Voronoi diagram of points. Inter-

estingly, the class of affine Voronoi diagrams is identical to the class of power diagrams in

the plane [BWY06, §2.3.3]. Every abstract Voronoi diagram (Section 2.1) whose bisectors

are lines has a corresponding power diagram that constitutes it. Therefore, having a robust

implementation for computing power diagrams of sets of disks is, in some sense, a complete

solution in this context.

Definition 4.1 (Planar power diagram). The planar power distance is measured from a

point x ∈ R
2 in the plane to a disk d with center c and positive radius r, and is defined to

be: ρ(x, d) = (x− c)2 − r2. The power diagram of a set D of disks in the plane is defined to

be the nearest-site Voronoi diagram induced by the power distance.

4.1. Planar Voronoi Diagrams 31

Figure 4.1: Computing the Voronoi

diagram of a set of points using the

lower envelope of a set of planes. The

minimization diagram (appears above

the envelope for clarity) of 36 planes,

which represent distance functions to

36 point sites in a degenerate con-

stellation, constitutes the Voronoi di-

agram of the points. The lower enve-

lope, as well as the minimization di-

agram, are clipped to within an axis-

aligned square.

Using a simple observation, one can construct the

lower envelope of a set of planes instead of constructing

the lower envelope of the paraboloids that represent the

power distance functions from the disk sites. We trans-

form each paraboloid of the form fi(x) = x2−2xc+c2−r2

to the plane πi : −2xc+ c2− r2. In other words, for each

point x ∈ R
2 and a site we remove the x2 factor from

the power distance. Notice that each distance function is

decreased by the same amount for a specific point x, and

thus, the topological structure of the lower envelopes of

the original paraboloids and the new linear functions is

identical. See Figure 4.1 for an illustration.

The Envelope 3 package of Cgal contains a traits

class for constructing the lower or upper envelope

of a set of planes and half-planes in R
3, named

CGAL::Env plane traits 3. However, as it might be ex-

pected, the implementation of this traits class is more

complicated than is needed when considering the com-

putation of power diagrams only (and not general en-

velopes). The reason is that the Env plane traits 3

traits class handles cases that cannot occur during the

computation of power diagrams, i. e., the planes that represent power distance functions are

always full planes and are never vertical.

We implemented an easy-to-use traits class for the computation of standard Voronoi

diagrams of points and power diagrams of disks using our framework. The traits class is

named CGAL::Power diagram traits 2 and is a model of the EnvelopeVoronoiTraits 2 concept

(see Section 3.3). The implementation of the traits class is much simpler than the Envelope 3

package’s traits class, and provides a better interface for computing Voronoi diagrams — the

user of the traits class does not need to construct any plane. A traits class modeling the

EnvelopeVoronoiTraits 2 does not have to actually construct the distance functions from the

sites; see Chapter 3. The Power diagram traits 2 traits class does not construct the three-

dimensional planes, but directly implements all the required predicates and operations.

Our traits class inherits from the CGAL::Arr linear traits 2 traits class [WFZH08] that

models the ArrangementTraits 2 concept and supports arrangements induced by linear ob-

jects, which may be bounded (segments) or unbounded (rays and lines). The traits class is

32 Chapter 4. Examples and Implementation Details

(a) (b) (c) (d)

Figure 4.2: Voronoi diagrams of various point-sets computed with our framework and our traits class
for computing power diagrams in the plane. (a) The Voronoi diagram of points ordered exactly on a
circle. The Voronoi diagram has a single vertex. (b) The Voronoi diagram of points ordered on a grid.
(c) The Voronoi diagram of points ordered on a cross. (d) The Voronoi diagram of points creating the
letters of Cgal and VD (an abbreviation for Voronoi Diagrams).

parameterized by a geometric kernel class [FGK+00,HHK+07]. The choice of the geometric

kernel, which consists of types of constant size non-modifiable geometric primitive objects

(e. g., points, lines, triangles, circles, etc.), and determines the number-type1 used and the

implementations of all geometric operations on kernel objects. In this context, the geomet-

ric kernel determines, for example, the type representing the bisector curves (lines) and the

number-type. The geometric kernel is passed as the underlying kernel for the Arr line-

ar traits 2 base class.

The Power diagram traits 2 class requires the underlying number-type to only support

exact rational arithmetic; as opposed to number types required in the following Sections 4.1.2

and 4.1.3. Namely, the number type should support the arithmetic operations +, −, ∗, and /

with unlimited precision over the rationals. An example for such number type is the rational

number type CGAL::Gmpq based on Gmp— Gnu’s Multi Precision library [4].

Disk sites (objects of type Site 2) are represented as unoriented circles in the two-

dimensional Euclidean plane by the kernel type Kernel::Circle 2. In order to stay in the

rational domain and apply only fast rational arithmetic operations, two restrictions on the

disk sites must be enforced: the coordinates of their centers have to be rational, and the

squares of their radii have to also be rational.

Although the new traits class provides a simpler implementation and a more convenient

interface, it does not provide a significant increase in performance in comparison with the

Env plane traits 3 traits class. The reason is that the main performance hit during the ex-

ecution of the algorithm is caused, in fact, by the exact and expensive geometric operations

1There are several different classes that can represent numbers in Cgal.

4.1. Planar Voronoi Diagrams 33

and predicates that are provided by the kernel. Section 4.3 provides details on optimiza-

tions, which improve the computation time significantly. Most of the optimizations there

concentrate on minimizing the number of calls to geometric operations and predicates.

Two-Site Triangle-Area Voronoi Diagram

Planar two-point distance functions are defined from a point x in the plane to a pair of

point site {p, q}. Among the known distance functions are (i) the sum of distances, which

is defined by ρ(x, {p, q}) = d(x, p) + d(x, q) where d is the Euclidean distance, (ii) the

product of distances which is defined by ρ(x, {p, q}) = d(x, p) · d(x, q), (iii) the triangle

area distance function defined by the area of △xpq, (iv) the triangle perimeter distance

function defined by the perimeter of △xpq, and (v) the difference of distances defined by

ρ(x, {p, q}) = |d(x, p)−d(x, q)|. The combinatorial complexity of the diagrams and the time

complexity of the known algorithms for computing various two-point site Voronoi diagrams

varies [BDD02].

We describe in this section the implementation of a traits class named, Triangle area dis-

tance traits 2 that enables the computation of the Voronoi diagram of points as induced

by the triangle area distance function. The traits class uses rational arithmetic only and

handles degenerate input.

The triangle distance function between a point (x, y) in the plane and a pair of points

(px, py) and (qx, qy) is defined to be the area of the triangle formed by these three points,

namely,

1

2
abs

∣

∣

∣

∣

∣

∣

∣

x y 1

px py 1

qx qy 1

∣

∣

∣

∣

∣

∣

∣

.

The combinatorial complexity of the nearest-site Voronoi diagram of n points in general

position as induced by the triangle distance function is Θ(n4), and Θ(n2) for the farthest-site

Voronoi diagram.2

Triangle area distance traits 2 is a model of the EnvelopeVoronoiTraits 2 concept. Sim-

ilar to the Power diagram traits 2 traits class, our traits class inherits from the CGAL::Arr lin-

ear traits 2 traits class, which models ArrangementTraits 2 concept. The class is parame-

terized by a geometric kernel class whose number type is required to support exact rational

arithmetic for achieving a robust implementation. The geometric kernel is passed to the

Arr linear traits 2 base class as a template parameter.

2Remember that there are Θ(n2) pairs of points, so we actually obtain a quadratic Voronoi diagram in
the number of sites.

34 Chapter 4. Examples and Implementation Details

The Voronoi sites (of Site 2 type) of our diagram are pairs of points.3 The user is

accountable for providing all pairs of points as part of the input. The distance from a

rational point in the plane to a pair of rational points is rational (due to the rational nature of

the distance function). The Compare distance at point 2 functor compares the two rational

distances of a point in the plane to two 2-point sites.

The bisector of two sites consists of two rational lines. Let S1 and L1 be the segment

connecting the two points of one site and its supporting line, respectively, and let S2 and L2

be the segment connecting the two points of another site and its supporting line, respectively.

The intersection of L1 and L2 is the intersection of the two bisector lines. If L1 and L2 are

parallel, then the bisector consists of two parallel lines that become the same line if S1 and S2

are of the same length. If S1 and S2 are collinear then the bisector is either one line, or, in

case that S1 and S2 are of the same length, does not exist. We construct the two lines in the

Construct bisector 2 functor implementation. We have to perform an additional operation

before outputting the two lines. The Envelope 3 package code does not tolerate bisectors

whose x-monotone parts intersect in their interior. Before outputting the bisector we have

to intersect the two lines and transform them into 4 interior-disjoint rays.

The last functor that is required by the EnvelopeVoronoiTraits 2 is the Compare distance a-

bove 2 functor. The bisector lines partition the plane into a maximum of 4 regions. If one

of the points of a Voronoi site is inside a specific region, then the region is dominated by the

Voronoi site of the point. When crossing a bisector we move from a region that is dominated

by one site to a region that is dominated by the other site (except for the case where all four

points are collinear). We compute the number of curves we need to cross to get from one

of the points of the first site and from the region above the input curve to the upper-most

face. (If we have a vertical line then we take the left one.) If both numbers are even or odd

together we return that the region above the input curve is dominated by the first site. If

one is odd and the other is even then the region is dominated by the second site.

4.1.2 Voronoi Diagrams with Higher-Degree Algebraic Bisectors

This section describes diagrams where exact rational arithmetic only is insufficient for com-

puting the diagrams in an exact and robust manner. The presented diagrams are curved

Voronoi diagrams [BWY06] requiring a higher-degree algebraic machinery.

3We use STL’s templated std::pair class, instantiated with Kernel::Point 2.

4.1. Planar Voronoi Diagrams 35

Möbius Diagrams

Definition 4.2 (Möbius diagram). Let w be a Möbius site defined by a triple (p, λ, µ) where

p ∈ R
2 and λ, µ ∈ R . The Möbius diagram of a set W = {w1, . . . , wn} of Möbius sites is

the Voronoi diagram induced by the following distance function: ρ(x, wi) = λi(x− pi)
2 − µi

The Möbius diagram is a generalization of the power diagram of disks (Section 4.1.1)

and of the multiplicatively-weighted Voronoi diagram. When all λi are equal, the Möbius

diagram becomes the power diagram of the set of disks centered at pi with radii
√

µi

λi
. When

µi = 0 for all i, the Möbius diagram becomes the multiplicatively-weighted Voronoi diagram

with pi as the points and
√
λi as the weights.

The bisector of two Möbius sites is either a circle or a line (in case of equal λ parame-

ters). Moreover, every abstract Voronoi diagram whose bisectors are circles or lines has a

corresponding Möbius diagram that constitutes it [BWY06, §2.4.1] (similar to the relation

of power diagrams and affine Voronoi diagrams).

Cgal contains a traits class for the arrangement package that supports arrangements

of circular and linear bounded segments, named Arr circle segment traits 2. The efficient

implementation of the traits class, which supports these curves, is attained by the observation

that the coordinates of all intersection points between the curves are of algebraic degree 2

only, and, therefore, can be represented with square-root extension numbers (which are an

extension to the rational field).

We have created a model class for the EnvelopeVoronoiTraits 2 concept named CGAL::Mo-

bius diagram traits 2, which supports the construction of Möbius diagram using our frame-

work. The traits class supports rational Möbius sites (with rational p, λ, and µ). The

CGAL::Mobius diagram traits 2 class is based on an extension we have implemented for the

Arr circle segment traits 2, named Arr circle linear traits 2, which supports, in addi-

tion, unbounded linear curves (lines and rays).

The fact that Arr circle linear traits 2 harnesses efficient square-root extension arith-

metic does not immediately imply that an implementation for the Möbius diagram that uses

only square-root extension arithmetic (and not higher-degree algebraic numbers) is easily

obtainable. Performing operations with square-root extension numbers is limited, since

square-root extension numbers form an algebraic field only if they are extended by the same

root. (Rational numbers are considered to be present in all extension fields.) This means

that arithmetic operations on two square-root extension numbers can be easily performed,

while staying in the same algebraic-degree arithmetic, only if they have the same extension.

We compute the distance from a point, which is of type Arr circle linear traits 2::-

36 Chapter 4. Examples and Implementation Details

Point 2, to a Möbius site using square-root extension arithmetic. The x and y coordinates of

a point of the Arr circle linear traits 2 traits class are either both rational, one is rational

and the other is a square-root extension number, or both are square-root extension numbers

with the same extension. Therefore, we can perform all needed arithmetic operations for

computing the distance by using square-root extension arithmetic.

Another non-trivial functor is the Construct point on x monotone 2 functor. In order to

construct a point on an edge, assuming that the edge is not vertical, we construct isolating

rational intervals for both of its endpoints. We use both intervals to get a rational c between

the endpoints and construct the vertical line y = c. The resulting point is the intersection

point between this vertical line and the original edge. We perform similar operations in the

cases of a vertical curve and an unbounded curve.

Anisotropic Voronoi Diagrams

Definition 4.3 (Anisotropic Voronoi diagram). Let s be an anisotropic site defined by the

triple (pi,Mi, πi) where p ∈ R
2, M ∈ R

2×2 is a symmetric positive definite matrix, and

π ∈ R . The Anisotropic Voronoi diagram of a set S = {s1, . . . , sn} of anisotropic sites is

the Voronoi diagram induced by the following distance function:

ρ(x, si) = (x− pi)
tMi(x− pi)− πi

Anisotropic Voronoi diagrams are a natural generalization of Möbius diagrams (take the

matrix M to be the scalar λ from Definition 4.2 times the identity matrix). Anisotropic

Voronoi diagrams have various applications, e. g., guaranteeing the quality of meshes [LS03].

The bisector of two Anisotropic sites is a full planar quadratic curve (i. e., a circle, an

ellipse, a parabola, a hyperbola, or a degenerate version of one of the previous). Again,

every abstract Voronoi diagram whose bisectors are full quadratic curves has a corresponding

anisotropic diagram that constitutes it [BWY06, §2.4.2].
We have created the Anistropic voronoi traits 2 traits class that enables the compu-

tation of anisotropic Voronoi diagrams using our framework. The traits class is based on a

new traits class for the arrangement package that enables the construction of arrangements

of algebraic plane curves [BE08,EK08]. The remaining required functors are a functor for

constructing the bisector of two anisotropic sites and functors to answer proximity queries.

All required proximity predicates are similarly implemented as follows: we construct a

point p inside the region in question (rational points get a higher priority). Then, we compare

the distances from p to the two anisotropic sites and decide which of the sites is closer.

4.1. Planar Voronoi Diagrams 37

Deciding which of the sites is closer is a non-trivial task as we try to expedite the com-

putation that involves expensive algebraic arithmetic. We use several techniques to optimize

the computation. First, we try to construct an exact rational point (as opposed to a point of

a higher algebraic degree). In most cases this is possible (but not in all, e. g., it is not possible

to construct a rational point inside a singleton that consists of a non-rational point). Points

with rational coordinates induce a rational distance, the computation of which is easy and

fast. Second, if we are forced to construct a non-rational point, we first try to use rational

interval arithmetic to decide the predicate [BBP01]. Each point represented by the algebraic

plane curves traits class has a rational bounding-box with which we try and deduce a correct

answer. Only if we can not use rational arithmetic to decide the predicate correctly, we

resort to more expensive algebraic computations based on the Core library [KLPY99] [3].

4.1.3 Voronoi Diagrams with Semi-Algebraic Bisectors

In this section we describe the implementation of two important Voronoi diagrams, the

Apollonius diagram (or additively-weighted Voronoi diagram) and the Voronoi diagram of

linear objects. The bisectors of the two diagrams are semi-algebraic, i. e., composed of

portions of algebraic curves. The implementation of both diagrams is based on the algebraic

plane curve traits class mentioned in the previous section. We concentrate on the additional

problems introduced by the computation of Voronoi diagrams with semi-algebraic bisectors.

Those problems include, among others, non-rational distance functions and complicated

boundary conditions.

Apollonius Voronoi Diagrams

The Apollonius diagram, also known as the additively-weighted Voronoi diagram, has appli-

cations in many fields [OBSC00,ADA07]. It is often used as a replacement for the Voronoi

diagram of circles in the plane. (See Chapter 6 for a concrete application of the Apollonius

diagram — computing a minimum-width annulus of a set of disks.)

Definition 4.4 (Apollonius diagram). Given a set D = {d1, . . . , dn} of disks with respective

centers pi and radii ri, the Apollonius diagram of the set is the diagram induced by the

following distance function: ρ(x, di) = ||x− pi|| − ri

Given two disks in the plane, their Apollonius bisector is either (i) one branch of a

hyperbola, which “bends” toward the disk with the smaller radius, (ii) a line, which is the

bisector of the centers of the disks, in case of equal radii, or (iii) the empty set in the case

38 Chapter 4. Examples and Implementation Details

where one disk contains the other (there is no bisector as one site dominates the whole

plane). In the case that the bisector is a branch of a hyperbola, the transverse axis of the

hyperbola is the line passing through the centers of the disks.

The traits class Apollonius traits 2 enables the construction of Apollonius diagrams

using our framework, and handles all degenerate cases (including all types of bisectors).

The implementation of this traits class is similar to the implementation of the traits class

for the anisotropic diagram (see Section 4.1.2 above). There are two main differences in

the implementation of the Apollonius traits 2 class. The first is the construction of the

bisector of two Apollonius sites, which is not a simple full algebraic curve. The second is that

the distance function between a point in the plane and an Apollonius site is not “rational,”

meaning that the distance is not necessarily rational even if the given point is.

The construction of a bisector amounts to the following task. Given the full algebraic

hyperbolic curve, pick the correct branch and return it. We efficiently implement the functor

for constructing the bisector by exploiting the Make x monotone 2 functor of the algebraic

curves traits class. The Make x monotone 2 of the traits class not only splits the hyperbola into

two/four different x-monotone curves, but also fortunately returns them in a lexicographic

order. By examining the coordinates of the centers of the disks and their radii, we can

determine which of the two branches is the bisector. For example, in the case of a vertical

asymptote, we pick the correct branch by comparing the x-coordinates of the centers of the

disks; the correct branch is the one on the same side as the disk of the smaller radius. Notice,

that if one Apollonius site contains another site then there is no bisector between them and

the site with the larger radius dominates the entire plane.

The distance function from a point in the plane to an Apollonius site is not rational. Even

if a rational point is given, the resulting distance is not necessarily rational. Still, comparing

the distances of a rational point to two Apollonius sites is faster than of a non-rational point.

A rational point results in a distance value of algebraic degree 2 where a general point of

the traits class may result in a number of algebraic degree up to 8. Again, we use the Core

library for comparing numbers of high algebraic-degree in an exact manner.

Voronoi Diagrams of Linear Objects

The Euclidean Voronoi diagram of segments in the plane is probably the most frequently

used Voronoi diagram after the Voronoi diagram of points. We present an exact implementa-

tion for a traits class for the computation of the Voronoi diagram of a set of interior-disjoint

linear geometric objects (lines, rays, and line segments) and points. Figure 4.3 shows di-

verse cases of Voronoi diagrams of linear objects computed with our traits class. Other

4.1. Planar Voronoi Diagrams 39

exact implementations for the Voronoi diagram of segments include the one provided by

Cgal [Kar04,Kar08] and the divide-and-conquer algorithm by Aichholzer et al. [AAA+09],

which uses Cgal predicates as basic building-blocks. Both implementations do not support

ray sites and line sites. The algorithm by Aichholzer et al. uses a circle to bound the Voronoi

edge-graph. A bounding circle cannot contain unbounded linear entities, such as lines and

rays. Our implementation here is aimed at demonstrating the generality of our framework.

(a) (b) (c) (d)

Figure 4.3: Voronoi diagrams of various sets of linear objects as induced by the Euclidean metric
computed with our framework. The sites are illustrated with dashed curves. (a) The Voronoi diagram
of 4×4 grid with three line segments connecting 6 grid points. (b) The same set of sites as in (a) with
a line, a segment, and two rays around the grid points. (c) The Voronoi diagrams of 8 rays in the plane.
(d) The Voronoi diagram of 8 segments and 7 isolated points. All segments intersect at one point,
which is one of their endpoints.

As mentioned before, the bisectors of two points or two lines in the plane are composed of

linear curves. The bisector of a point and a line is a parabola. As a result, the bisector of two

sites in the plane is composed of linear objects (segments, rays, and lines) and parabolic arcs.

The bisector of two segments can be composed of up to 7 arcs [Yap87]. It should be noted

that even computing just the linear bisectors of the diagram is not a trivial task. Indeed,

the bisector of two lines is two perpendicular lines, but those lines do not necessarily possess

rational coefficients. We support segments with intersecting vertices, which can induce two-

dimensional bisectors as the region dominated by the joint vertex can be two-dimensional.

The traits class Linear objects Voronoi traits 2 uses the following technique to deal

with the two-dimensional bisectors and the relative complex structure of the bisector curves.

The traits class treats each segment as a set of 3 different Voronoi sites: the two vertices

of the segment and the open set that is the interior of the segment.4 The handling of all

predicates, specifically predicates related to bisector construction, is made much simpler at

the cost of an enlarged set of sites. The splitting of a site into several sites is implemented

in the Make xy monotone 3 functor of the EnvelopeTraits 3 concept (this functor is not part

4A ray is treated as 2 different sites.

40 Chapter 4. Examples and Implementation Details

of the EnvelopeVoronoiTraits 2 concept). The class Linear objects Voronoi traits 2 models

the EnvelopeTraits 3 concept rather than the EnvelopeVoronoiTraits 2 concept.

The interior of a segment behaves like a full straight line inside the region between the

two perpendicular lines at its vertices. Moreover, it has no effect on any other point outside

that region as the vertices of the segment dominate the rest of the Euclidean plane. The

domain of the distance function to the interior of the segment is, therefore, defined to be

the aforementioned region. The domain of a ray is the half-plane that contains it and

bounded by the perpendicular line at its source. The domain of a distance function to a

point site and a line site remains the whole plane. We implement this by providing the

functor Construct projected boundary 2 defined in the EnvelopeTraits 3 concept.

After the splitting we only need to consider three types of bisectors, namely, the bisector

between two points, the bisector between two lines (where a line can also relate to the interior

of a segment or a ray) that is a two-line bisector, and the bisector between a point and a

line, which is a full parabola.

Comparing the distances of a point in the plane to two points or two linear objects is

trivial: we just compare the “regular” squared distance from that point to the sites. When

comparing the distances to a point and to a linear object we have to be more careful, as the

interiors of segments and rays are not closed sets. We compare the squared distances to the

point and to the linear object. If an “equal” result is the outcome of considering an endpoint

of the linear object, we decide that the point site is closer, as the endpoint of a linear object

(a segment or a ray) is not contained in its interior.

The final problem we have to face is that the bisector of two lines in the plane is two lines

that do not have rational coefficients in the general case. We observe that these two lines

constitutes a degenerate hyperbola with rational coefficients. We use the algebraic traits

class to construct the degenerate hyperbola that represents the bisector of the two input

lines.

4.2 Spherical Voronoi Diagrams

The computation of Voronoi diagrams makes use of two main operations supported by the

Arrangement on surface 2 package: (i) sweep-based overlay operation, which is used to over-

lay two minimization diagrams, and (ii) zone computation-based insertion operation, which

is used to insert bisector curves that partition cells of the refined arrangement; see Chapter 3.

The new Arrangement on surface 2 package extends the aforementioned operations, that

is, the sweep-line and zone-computation, to support two-dimensional parametric surfaces.

4.2. Spherical Voronoi Diagrams 41

Thus, we utilize the Envelope 3 code to handle minimization diagrams that are embedded

on two-dimensional parametric surfaces with little effort.

This section demonstrates how the ability of constructing arrangements on two-dimensional

parametric orientable surfaces is exploited to compute Voronoi diagrams on the sphere We

compute Voronoi diagrams, the bisectors of which are composed of geodesic arcs, namely,

arcs of great circles which are created by intersecting the sphere with planes passing through

the origin. Section 4.2.1 gives some details about the traits class we have created for the ar-

rangement package that enables us to construct arrangements of geodesic arcs on the sphere

using rational arithmetic only. Section 4.2.2 describes how we use the above traits class to

create a traits class for our Voronoi framework for computing Voronoi diagrams embedded

on the sphere, the bisectors of which are geodesic arcs — the Voronoi diagram of points

on the sphere and the power diagram of circles on the sphere. The section focuses on the

implementation details involved in the development of a Voronoi diagram embedded on a

two dimensional parametric surface.

Further details on the requirements from a traits class that enables the computation of

Voronoi diagrams on surfaces can be found in Section 3.3. Details on constructing arrange-

ments on surfaces in general, and on constructing geodesic arrangements on the sphere in

particular, can be found in [BFH+07,FSH08a] and in Efi Fogel’s Ph.D. thesis [Fog08].

4.2.1 Arrangements of Geodesic Arcs on the Sphere

Complying with the specifications in [BFH+07], we use the following parameterization of the

unit sphere: Φ = [−π+α, π+α]× [−π
2
, π
2
], φS(u, v) = (cosu cos v, sin u cos v, sin v), where α

must be substituted for a value, which yields rational cosα and rational sinα and defaults to

0, when the class is instantiated (at compile time). The equator curve, for example, is given

by γ(t) = (π(2t − 1) + α, 0), for t ∈ [0, 1]. This parameterization induces two contraction

points ps = (0, 0,−1) = φS(u,−π
2
) and pn = (0, 0, 1) = φS(u,

π
2
), referred to as the south

and north poles, respectively, and an identification curve {φS(π + α, v) | − π
2
≤ v ≤ π

2
}, as

φS(−π+α, v) = φS(+π+α, v) for all v (which coincides with the opposite Prime (Greenwich)

Meridian when α = 0). We developed the topology traits to support any type of curves

embedded on the sphere parameterized as above, without compromising the performance of

the operations gathered in the traits class. We concentrate on the details of the geometric

traits class as it is most relevant in this section.

The geometry-traits class for geodesic arcs on the sphere is parameterized with a geomet-

ric kernel [HHK+07]; see also Section 4.1.1. The implementation handles all degeneracies,

and is exact as long as the underlying number type supports the arithmetic operations +,

42 Chapter 4. Examples and Implementation Details

−, ∗, and / only in unlimited precision over the rationals, such as the one provided by

Gmp, the Gnu Multi-Precision bignum library [4], even though the embedding surface is

a sphere. We are able to use high-performance kernel models instantiated with exact ra-

tional number-types for the implementation of this geometry-traits class, as exact rational

arithmetic suffices to carry out all necessary algebraic operations.

The geometry-traits class defines the point type to be an unnormalized vector in R
3,

representing the place where the ray emanating from the origin in the relevant direction

pierces the sphere. An arc of a great circle is represented by its two endpoints, and by the

plane that contains the endpoint directions and goes through the origin. The orientation of

the plane and the source and target points determine which one of the two arcs of the great

circle is considered. This representation enables an exact, yet efficient, implementation of all

geometric operations required by the geometry-traits concept using exact rational arithmetic,

as normalizing directions and plane normals is completely avoided.

We describe in details two predicates: Compare u andCompare uv; see [Fog08] for the

(a)

x

y

d̂

p̂1p̂2

(b)

Figure 4.4: The implementation of the

Compare-u predicate in the traits class for

geodesic arcs on the sphere

complete set of the concept requirements. The for-

mer compares two points p1 and p2 by their u-

coordinates. The concept admits the assumption

that the input points do not coincide with the con-

traction points and do not lie on the identification

arc. Recall that points are in fact unnormalized vec-

tors in R
3. We project p1 and p2 onto the xy-plane

to obtain two-dimensional unnormalized vectors p̂1

and p̂2, respectively. We compute the intersection

between the identification arc and the xy-plane to

obtain a third two-dimensional unnormalized vec-

tor d̂. Finally, we test whether d̂ is reached strictly before p̂2 is reached, while rotating

counterclockwise starting at p̂1. This geometric operation is supported by every geometric

kernel ofCgal. In the figure on the right d̂ is reached strictly before p̂2 is reached. Therefore,

the u-coordinate of p1 is larger than the u-coordinate of p2.

The predicate Compare uv compares two points p1 and p2 lexicographically. It first

applies Compare u to compare the u-coordinates of the two points. If the u-coordinates

are equal, it applies a predicate that compares the v-coordinates of two points with identical

u-coordinates, referred to as Compare v. This predicate first compares the signs of the

z-coordinates of the two unnormalized input vectors. If they are identical, it compares the

squares of their normalized z-coordinates, essentially avoiding the square-root operation.

4.2. Spherical Voronoi Diagrams 43

All the required geometric types and geometric operations listed in the geometric traits

concept are implemented using rational arithmetic only. Degeneracies, such as overlapping

arcs that occur during intersection computation, are properly handled. The end result is a

robust, yet efficient, implementation.

4.2.2 Power Diagrams on the Sphere

The spherical Voronoi diagram and its generalization, the power diagram of circles on the

sphere (both defined below) are composed of geodesic arcs. Both diagrams have applications

similar to the applications of Voronoi diagrams of points and power diagrams in the plane.

For example, determining whether a point is included in the union of circles on the sphere,

and finding the boundary of the union of circles on the sphere [IIM85, Sug02]. Both also

have unique applications, for example, the properties of the spherical Voronoi diagram can

be used to prove the the thirteen spheres theorem [Ans04].

Following are definition for the geodesic distance on the sphere (which is the analog of

the Euclidean distance between two points in the plane) and the spherical Voronoi diagram

(which is the analog of the Voronoi diagram of points in the plane).

Definition 4.5 (Geodesic distance). Given two points p, q ∈ S
2, the geodesic distance

between them ρ(p, q) is defined to be the shortest distance measured along a path on the

surface of the sphere. The geodesic distance ρ(p, q) is equal to the length of a geodesic arc

that connects p and q.

v
0

pi/2

−pi

u

0

pi

Figure 4.5: Geodesic distance function on the

sphere.

Figure 4.5 to the right illustrates the distance

function from (0, 0) ∈ [−π, π] × [−π
2
, π
2
] in the

parameter space (defined in Section 4.2.1 above)

to any other point in the parameter space. As

expected from the topology of the surface, we

get a function whose values are identified at the

boundaries of the parameter space. Fortunately

for us, we do not have to explicitly construct and

handle these types of functions. We only have to

correctly answer the predicates that are required

by the algorithm. The central projection of the

intersection of two such functions onto the sphere is a great circle, as the bisector of two

points on the sphere as induced by the geodesic distance is a great circle.

Definition 4.6 (Spherical Voronoi diagram). Let P = {p1, . . . , pn} be a set of n points

44 Chapter 4. Examples and Implementation Details

in S
2. The spherical Voronoi diagram of the set P is the Voronoi diagram as induced by the

geodesic distance function.

The bisector of two point sites on the sphere is a great circle that is the intersection

of the sphere and the bisector plane of the points in R
3, as imposed by the Euclidean

metric [NLC02,OBSC00]. The power diagram of circles on the sphere, also known as the

Laguerre Voronoi diagram on the sphere, is also composed of arcs of great circles [Sug02];

see Figures 4.6 (c) and 4.6 (d).

Given two circles on the sphere c1 and c2, let π1 and π2 be the planes containing c1 and

c2, respectively. The bisector of c1 and c2 is the intersection of the sphere and the plane that

contains the intersection line of π1 and π2 and the center of the sphere. If π1 and π2 are

parallel planes, then the bisector is the intersection of the sphere and the plane that contains

the center of the sphere and is parallel to both π1 and π2.

We believe that the following argument, similar to arguments in previous sections, is

true; more details are supplied in Chapter 7.

Conjecture 4.7. The class of all Voronoi diagrams with great circles as bisectors is identical

to the class of power diagrams of circles on the sphere.

The Arr geodesic arc on sphere traits 2 traits class for computing arrangements of

geodesic arcs on the sphere provides predicates and operations needed for the computa-

tion of Voronoi diagrams on the sphere, the bisectors of which are great circles or piecewise

curves composed of geodesic arcs. It is the basis of the Spherical power diagram traits 2

class that enables the construction of power diagrams of sets of circles on the sphere using our

framework. The traits class applies only rational arithmetic, and so, only Voronoi diagrams

of circles defined by the intersection of rational planes with the sphere (and rational points

on the sphere) are supported. This is not a very strong limitation as every input point can

be approximated with a rational point up to any desired precision [CDR92].

The Spherical power diagram traits 2 is a model of the EnvelopeVoronoiTraits 2 concept

and defines all required types and functors. It is parameterized by a geometric kernel ofCgal

that is passed also to the Arr geodesic arc on sphere traits 2 base class. The kernel should

support exact rational number-types to carry all necessary operation in an exact manner.

The traits class handles all degenerate situations efficiently.

A Site 2 in the Spherical power diagram traits 2 is an object of type Kernel::Plane 3

— a 3D plane object of the geometric kernel. The plane represents the Voronoi site that

is the circle intersection of the plane and the embedding sphere. Not all planes in three

dimensions can represent a site in our traits class. Recall that we are constructing the

4.2. Spherical Voronoi Diagrams 45

arrangement on the sphere, so only planes whose distance from the origin is ≤ 1 are used.

The Construct bisector 2 functor is responsible for constructing the bisector of two circle

sites on the sphere. It intersects the two underlying planes of the Voronoi sites, and constructs

the great circle that is defined by the plane containing the intersection line and the origin.

In the case that both planes are parallel, we construct the great circle that is defined by the

plane parallel to both planes and passing through the origin.

The functor Construct point on x monotone 2 constructs a point in the interior of a u-

monotone curve. Every u-monotone arc has a source point and a target point. Recall that

points are represented as unnormalized vectors in three-dimensions. If the geodesic arc is

smaller than π, adding the source and target vectors results in an unnormalized vector that

represents a point in the interior of the arc. If the geodesic arc is bigger than π we construct

the opposite vector. The case where the geodesic arc is equal to π, in which the source and

target are antipodal, is handled by constructing an orthogonal vector to both the target

vector and the normal of the plane. The resulting vector represents a point in the interior

of the u-monotone arc.

The remaining functors are the proximity predicates Compare distance at point 2 and

Compare distance above 2. The former predicate is given two circle sites (defined by two

planes) and a point on the sphere (defined by a vector) and is to decide which of the sites

the point is “closer” to. The circle that is closer to the point is the one defined by the plane

encountered first when shooting a ray in the direction of the point from the origin. The

predicate intersects the underlying planes with the line passing through the origin and the

input point. Then, it compares the distances of the intersection points to the origin. An

intersection point could be in the same direction as the input point from the origin, or in the

opposite direction. A site whose intersection point is in the opposite direction is considered

farther from the input point than a site whose intersection point is in the same direction.

If the intersection points of both circles are in the opposite direction, the opposite result is

returned. If one of the planes is parallel to the vector that represents the input point then,

if the intersection point of the other site is in the same direction, the other site is closer,

otherwise the site with the underlying parallel plane is closer. If both planes are parallel to

the vector of the point we have an equality.

The Compare distance above 2 is implemented by considering the geodesic arc itself and

the planes that define the two sites. We observe the u and v coordinates of the normals to

the planes and deduce an answer. This is similar to the implementation of the same functor

in the power diagram of disks in the plane; see Section 4.1.1. The main difference is that on

the sphere, circles with the same center but with different radii still have a bisector, whereas

46 Chapter 4. Examples and Implementation Details

in the plane the disk with the larger radius dominates the whole plane. In other words, two

sites always have a bisector. If the normals to the planes are in the same direction (circles

having the same center) then the distance of the planes to the origin (radii of the circles) is

also considered while deducing an answer.

Figure 4.6 shows some Voronoi diagrams on the sphere. Figures 4.6 (b) and 4.6 (d) are

of specific interest as they constitute highly degenerate scenarios.

(a) (b) (c) (d)

Figure 4.6: Voronoi diagrams on the sphere. Sites are drawn in red and Voronoi edges are drawn in
blue. (a) The Voronoi diagram of 32 random points. (b) A highly degenerate case of Voronoi diagram
of 30 point sites on the sphere. (c) The power diagram of 10 random circles. (d) A degenerate power
diagram of 14 sites on the sphere.

4.3 Speeding-up the Computation

The main performance hit during the execution of our algorithm (and exact geometric algo-

rithms in general) is caused while trying to exactly evaluate geometric predicates, i. e., using

exact arithmetic operations. There is a conceptual efficiency scale of operations, ranging

from the most efficient operations to the less efficient operations. The most efficient oper-

ations are the ones using machine-supported arithmetic, such as integers and floating-point

numbers. Using exact rational-arithmetic is less efficient than the machine-supported arith-

metic, but is still much faster than using exact higher-degree algebraic computation. As the

algebraic degree goes up, the performance of operations goes down.

There are several optimizations that can be applied to a geometric algorithm. The first

is trying to use the more efficient arithmetic according the scale described above. If the

used arithmetic fails we go down the scale of efficiency and use a higher-precision or higher

algebraic-degree arithmetic. Alternatively, one can try and use simpler (approximated) oper-

ations to the reduce the use of the exact and complicated operations (e. g., when performing

an intersection test between two polylines, the intersection of their bounding boxes can be

4.3. Speeding-up the Computation 47

tested first). Another technique is to reduce the number of (redundant) geometric operations

used. The technique of using a simpler approximated version of a predicate to alleviate the

use of the more expensive operation is referred to as filtering. When the filtering exploits the

specific geometry of the problem at hand it is referred to as geometric filtering. We describe

below techniques we have applied to reduce the running time of our algorithm in the context

of affine Voronoi diagrams; Section 4.1.1. We use fast geometric filters and apply specific

techniques at a high level for (affine) Voronoi diagrams that reduce lower-level filter-failures.

Most implementations of traits classes for our framework are based on traits classes for

the arrangement package. The first step in optimizing the code is to pick the most efficient

traits class to handle the bisector curves of the specific diagram. The Arr linear traits 2

class is parameterized with a kernel object, the choice of which has a drastic effect on the

performance of our code.

Cgal provides basic geometric kernels with built-in filtering mechanisms. The CGAL::La-

zy kernel class is an efficient geometric kernel of Cgal [FP06], which supplies lazy construc-

tion and evaluation of the geometric predicates and operations that delay the exact geometric

computations at run-time. Every geometric object of the CGAL::Lazy kernel class holds two

other instances of different classes; one instance is approximated using machine floating-point

interval-arithmetic, and the other instance is exact using rational arithmetic. The kernel tries

to use the fast machine arithmetic, and only if it fails, it performs the required operation

using the exact version of the object. Every geometric object that was created using kernel

operations keeps the tree of operations that created it. This way, when an approximated

operation fails, the tree of operations can be retrieved and the operations are performed all

over again using the exact version. However, if an operation does not fail, no costly operation

is performed (a lazy behavior). This filtering mechanism is applied at the geometric level,

which proved to be more efficient than the regular interval-arithmetic filtering mechanisms

that are applied at the arithmetic (number-type) level. We use the CGAL::Lazy kernel as the

base for our traits class in the case of Voronoi diagrams with linear bisectors. A future work

is to implement a traits class for the Möbius diagram using the CGAL::Circular kernel 2

with other geometric filtering optimizations [PTT06]; see Chapter 7.

The aforementioned geometric kernels and traits classes for the arrangement package

provide a very general approach for accelerating geometric computations. However, the

filtering techniques applied at this low level are not aware of certain properties of the specific

problem at hand, which can be exploited to improve performance. Specifically, the lower

envelope algorithm applies some geometric predicates that incur geometric filter-failures due

to the combinatorial structure of Voronoi diagrams. With a simple observation, we can avoid

48 Chapter 4. Examples and Implementation Details

(a) (b)

Figure 4.7: Three-bisectors optimization. During the merge step of the blue and red Voronoi diagrams
each face is split by the bisector of the two nearest sites of both diagrams. (a) The bisector of the right
blue site and the red site splits the right face. (b) The bisector of the left blue site and the red site
splits the left face. Notice that the bisector passes through the intersection point of the former bisector
and the boundary of the right face (the intersection point is circled in green).

those filter-failures during the execution of the divide-and-conquer algorithm, increasing the

efficiency of our code.

Observation 4.8. Given three Voronoi sites and their pairwise bisectors, if two of the bi-

sectors intersect then the third bisector passes through their intersection point(s).

Indeed, denoting the sites by o1, o2, and o3, then at every intersection point x of any two

of the three corresponding bisectors, we have ρ(x, o1) = ρ(x, o2) = ρ(x, o3).

The merge step of the divide-and-conquer of algorithm (see Section 3.1) consists of deter-

mining the structure of the Voronoi diagram over each face f of the overlay of Vorρ(S1) and

Vorρ(S2). The face f has a fixed nearest site s1 from S1 and a fixed nearest site s2 from S2.

We partition f into subfaces consisting of points nearer to s1 and subfaces consisting of

points nearer to s2 by inserting their bisector into the arrangement.

If f is split into at least two regions, then the bisector of s1 and s2 generally intersects

some edges of f .5 Let us assume, without loss of generality, that the bisector intersects an

edge e that originally belonged to Vorρ(S1). The edge e is part of the bisector between s1 ∈ S1

and another site t ∈ S1. Assuming general position, when examining the neighboring face

f ′ of f on the other side of e, the two fixed nearest sites are t ∈ S1 and s2 ∈ S2. According

to Observation 4.8 the bisector of t and s2 will pass through the intersection points of the

bisector of s1 and s2, and e.

Each feature of the overlay is extended with the nearest Voronoi sites to it. When

inserting a bisector into the overlay and creating a new vertex at the intersection point, we

5This is not always true as a bisector can form a closed loop within the face.

4.3. Speeding-up the Computation 49

update the information of the new vertex. When inserting another bisector to the overlay

and trying to decide if a point is on the bisector curve, we first check this information instead

of using a geometric predicate, which is redundant and would have caused a filter to fail.

We call this optimization the three-bisectors optimization; see Figure 4.7 for an illustration.

A bisector curve is inserted into the underlying arrangement using a zone-construction

algorithm. The zone-construction algorithm of the arrangement package is most general

and can handle any input, including a face that contains inner-holes, isolated vertices, or

“antennas” [WFZH07]. In the case of a Voronoi diagram with affine bisectors we always

insert the bisector curve into a convex face (with no inner holes). We use a simplified

version of the zone algorithm, which gives us additional performance improvement.

Table 4.1: Effect of the three-bisector and simplified zone optimizations on random points. Time is
measured in seconds. FF — the number of filter-failures that occurred during the computation, V —
the number of vertices of the diagram, E — the number of edges of the diagram, F — the number of
faces of the diagram, 3-Bis. — the three-bisector optimization, S-Z — the simplified zone optimization.

Input
Diagram Size No opt. 3-Bis. opt. 3-Bis. + S-Z

V E F Time FF Time FF Time FF

rnd 1000 1979 2978 1000 5.52 75105 3.58 11408 2.72 599
rnd 2000 3983 5982 2000 12.57 168411 8.30 25099 6.58 1285
rnd 4000 7979 11978 4000 28.54 370848 19.66 58098 15.41 2807

The simple version works in the case of inserting a curve (line) into a bounded convex

face (that is composed of linear segments). First, we try to detect if one of the vertices

of the faces was created by inserting a bisector (a vertex that will invoke the three-bisector

optimizations). This avoids the costly operations performed by the regular zone algorithm for

finding the vertex by traversing the edges of the face. After we have found a maximum of two

intersection points we stop, as this is the maximum number of intersections. Additionally, we

do not check intersections with inner holes and do not consider other degenerate situations.

For the other cases, i. e., inserting a line into an unbounded face or a zone-insertion that

admits an overlap, we use the standard zone algorithm supplied by the arrangement package.

Table 4.1 shows the improvements in running time achieved by our optimizations.

50 Chapter 4. Examples and Implementation Details

5
Discussion: Advantages and Limitations

Our framework consists of several fundamental concepts: (i) robust computation through the

adherence to the exact computation paradigm, utilizing components from Cgal, (ii) using

randomization on the input to the divide-and-conquer construction algorithm, yielding an

efficient algorithm, and (iii) the representation of Voronoi diagrams as arrangements, Cgal’s

arrangements to be precise.

Following is a comprehensive discussion on both the advantages and the limitations of

our framework. The advantages are discussed in Section 5.1 and the limitations are discussed

in Section 5.2.

5.1 Advantages

The major strength of our approach is its completeness, robustness, and generality, that

is, the ability to handle degenerate input, the agility to produce exact results, and the

capability to construct diverse types of Voronoi diagrams with a relatively small effort.

The code is designed to successfully handle degenerate input, while exploiting the synergy

between generic programming and exact geometric computing, and the divide-and-conquer

framework to construct Voronoi diagrams.

51

52 Chapter 5. Discussion: Advantages and Limitations

Generality

A prime advantage of our framework is the ability to compute new types of Voronoi dia-

grams with relative ease. The diagrams are represented as arrangements of Cgal, and the

implementation of a new type of diagrams is based on a traits class for the arrangement

package, which supplies the handling of bisector curves of the sites. A Voronoi diagram

whose bisectors can be represented with an existing traits class for the arrangement pack-

age can be easily developed. Existing traits classes support bounded and unbounded linear

curves (line segments, rays, and lines), circles and linear segments, conic arcs, Bézier curves,

and algebraic curves of arbitrary degree.

The framework supports a vast variety of Voronoi diagrams with different properties.

The entire collection of supported Voronoi diagrams cannot be supported by most other

frameworks. Existing frameworks for computing Voronoi diagrams usually support a spe-

cific family of Voronoi diagrams, e. g., planar Voronoi diagrams of points under the Lp metric,

planar Voronoi diagrams of general sites under the Euclidean metric etc. Using an envelope-

construction based algorithm allows our framework to support two-dimensional diagrams

with almost no restrictions; we can implement linear Voronoi diagrams as well as Voronoi

diagrams with quadratic complexity, and Voronoi diagrams with two-dimensional bisectors.

The diagrams do not have to conform with the abstract Voronoi diagrams definition, for

example anisotropic diagrams: we construct such diagrams whereas the theoretical require-

ments for an abstract Voronoi diagram include that all bisectors will divide the plane into

two unbounded regions. As mentioned before, we can also compute Voronoi diagrams on

two-dimensional orientable parametric surfaces. Existing topology-traits classes in the ar-

rangement package include a topology-traits class for the plane, the sphere, elliptic quadrics,

and ring Dupin cyclides that generalize tori.

More information on realizations of the framework can be found in Chapter 4.

Theoretical Optimality

The random partitioning of the Voronoi sites into two sets in the divide step of the algorithm

yields a near-optimal expected running time in the size of the output diagram (Section 3.4).

This optimality result is general, and true for every type of diagrams supported by the

framework.

Figure 5.1 demonstrates the effect of randomly partitioning the sites on the standard

Voronoi diagram of points with diverse sets of inputs. We apply the following three different

partitioning strategies: (i) the partitioning based on lexicographic sort (Sorted) — the first

5.1. Advantages 53

(a)

 0

 500

 1000

 1500

 2000

 300 600 900 1200 1500 1800

T
im

e
(s

ec
)

No. of points

Worst Case

Randomized
Sorted

Spatially Sorted

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 300 600 900 1200 1500 1800

T
im

e
(s

ec
)

No. of points

Parabola

Randomized
Sorted

Spatially Sorted

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 300 600 900 1200 1500 1800

T
im

e
(s

ec
)

No. of points

Random

Randomized
Sorted

Spatially Sorted

(d)

Figure 5.1: Effect of the random partitioning of Voronoi sites. The figure shows the running time in
seconds as a function of the number of sites in various cases of the standard Voronoi diagram (point
sites with L2 metric) using different partitioning strategies. (a) A worst-case example of 10 point sites in
the case of the standard Voronoi diagram. The dashed segments are segments that exist in the overlay
(if we use the “Sorted” partition strategy) but will not be present in the final diagram. (b) The running
time graph in the worst-case constellation where the point sites are arranged as in (a). (c) The running
time graph in the case where the point sites are on a single parabola. (d) The running time graph in
the case of random point sites inside a square.

set comprises the smaller ⌈n/2⌉ points and the second set of points comprises the larger

⌊n/2⌋ points, (ii) a partitioning based on CGAL::spatial sort function (Spatial Sorted), and

(iii) a randomized partitioning (Randomized). In all cases, if we randomly partition the

sites, we get a nearly-linear running time in the number of sites. In the case of a random

point-set (Figure 5.1 (d)) we get a slightly larger, though still nearly-linear, running time.

Figure 5.1 (b) uses the following set of inputs. Each input set of n points is defined to

be {(i, i)}n/2i=1 ∪ {(−i, i)}n/2i=1. If we partition the set into two subsets, to the left and to the

right of the y-axis (the “Sorted” partitioning strategy), then the overlay of the two Voronoi

diagrams has Θ(n2) complexity; see Figure 5.1 (a) for an illustration. Hence the algorithm

runs in Ω(n2) time, whereas the complexity of the final diagram is only Θ(n).

54 Chapter 5. Discussion: Advantages and Limitations

Handling Degeneracies

Implementing robust geometric algorithms is known to be a hard task [KMP+08]. In-

herent problems in designing geometric algorithms are the coping with the limited pre-

cision of machine-supported arithmetic and the handling of complicated boundary condi-

tions that arise in various degenerate situations (see Section 2.3). Our framework, like the

Arrangement on surface 2 package of Cgal, handles all degenerate situations while com-

puting Voronoi diagrams, as long as the supplied traits class handles a small number of

degenerate cases. For example, the traits class should detect if two x-monotone curves over-

lap when trying to intersect them. All implemented traits classes described in Chapter 4

handle all degenerate situations. Figure 5.2 depicts various degenerate situations that are

properly handled by our framework and the traits classes.

(a) (b) (c) (d)

Figure 5.2: Degenerate Voronoi diagrams computed with our software. (a) A degenerate standard
Voronoi diagram. (b) A degenerate additively-weighted Voronoi (Apollonius) diagram. (c) A degenerate
Voronoi diagram of segments. (d) A degenerate spherical Voronoi diagram. The sites in (b) and (c) are
illustrated with dashed curves.

Farthest-site Voronoi diagrams

A useful meta-type of Voronoi diagrams is the farthest-site Voronoi diagram. A farthest

Voronoi diagram can be formalized as a nearest-site Voronoi diagram. A farthest Voro-

noi diagram with positive distances comprises the nearest Voronoi diagram induced by the

following distance functions: ρF (x, o) = 1/ρ(x,o). In addition, reversing the assignment of dom-

inance regions of each pair of sites constitutes the definition for farthest Voronoi diagrams

using the abstract Voronoi diagram terminology.

Given a traits class for nearest Voronoi diagrams, our framework enables the immediate

computation of the respective farthest Voronoi diagrams (using the CGAL::farthest voronoi 2

function — see Section 3.3). The construction of the upper envelope of the distance functions

5.1. Advantages 55

from the sites yields the farthest Voronoi diagram. Figure 5.3 shows various farthest-site

Voronoi diagrams computed with our framework.

(a) (b) (c) (d)

Figure 5.3: Farthest-site Voronoi diagrams of the same sites as in Figure 1.2, computed with our
software. (a) A farthest point Voronoi diagram. (b) A farthest additively-weighted Voronoi diagram.
(c) A farthest Möbius diagram. (d) A farthest Voronoi diagram of segments. The sites in (b), (c), and
(d) are illustrated with dashed curves.

Post-computation Operations

Voronoi diagrams are represented as exact Cgal arrangements, and their vertices, edges, and

faces can easily be traversed while obtaining the coordinates of the vertices of the diagram

to any desired precision, if the situation requires.

Most applications require additional operations to be performed on the resulting Voro-

noi diagrams. The computed diagrams can be passed as input to consecutive operations

supported by the Arrangement on surface 2 package and its derivatives. We get plenty of

additional functionalities for free. Among those are (i) point-location queries and vertical-ray

shooting, (ii) the ability to perform aggregated insertion of additinal curves, (iii) computing

the zone of a curve inside a Voronoi diagram and inserting a curve in an incremental fashion

to an existing diagram, (iv) the ability to remove existing edge of the diagram, (v) overlaying

two (or more) Voronoi diagrams or arrangements, (vi) the ability to attach user-defined data

to all of the geometric and topological primitives, and (vii) the ability to use theBoost graph

library to run various graph algorithms on the diagram and its dual structure [WFZH08].

There are specific applications for the overlay of Voronoi diagrams, for example, represent-

ing the local zones of two competing telecommunication operators [BGZ00]. We describe

an application of the overlay operation for computing a minimum-width annulus of a set of

disks in the plane in Chapter 6.

Figure 5.4 shows an arrangement on the sphere induced by (i) the continents and some of

56 Chapter 5. Discussion: Advantages and Limitations

the islands on earth, and (ii) 20 major cities in the world, which appear as isolated vertices.

The arrangement consists of 1065 vertices, 1081 edges, and 117 faces. The initial data was

taken from gnuplot [5] and google maps [6]. The middle sphere embeds an arrangement that

represents the Voronoi diagram of the 20 cities above. The right figure shows the overlay of

the two aforementioned arrangements computed with the generic overlay function from the

Arrangement on surface 2 package.

(a) (b) (c)

Figure 5.4: Overlaying an arrangement and a Voronoi diagram on the sphere. (a) Arrangement induced
by the continents and some of the islands on earth. (b) Voronoi diagram of 20 points on the sphere
representing 20 major cities on the planet. (c) The overlay of the arrangement from (a) and the Voronoi
diagram from (b).

5.2 Limitations

Practical Computation Time

Theoretically, the randomized divide-and-conquer envelope approach for computing Voro-

noi diagrams is efficient and is asymptotically comparable to other (near-)optimal methods.

Practically, however, the concrete running time of our implementation is inferior to those

of existing implementations of various dedicated implementations (for specific type of dia-

grams). Following are possible explanations for the gap.

1. The method uses constructions of bisectors and Voronoi vertices as elementary building-

blocks and they must be exact. Geometric algorithms based on constructors (rather

than predicates) are usually more time and space consuming, especially when the con-

structed objects are exact, like in our case.1

1Recall, for example, that every constructed geometric object of the lazy kernel holds the entire construc-

5.2. Limitations 57

2. Each face of the overlay is inspected during the merge step. Though randomization

ensures us that the expected number of faces is proportional to the complexity of the

final diagram, a large number of redundant faces is being examined. Other algorithms

do not examine all the faces of the overlay, for example, the classic algorithm by

Shamos and Hoey [SH75] suggests that by sorting the input point sites only a small

number of faces has to be handled. Our general framework is unaware of these kind of

optimizations that relate to the specific type of the Voronoi diagram.

3. In many dedicated Voronoi diagrams algorithms implementations, various optimiza-

tions are employed to reduce the running time of the algorithm. Most of these op-

timizations cannot be applied by the general algorithm. For example, some Voronoi

diagrams algorithms harness the fact that sites usually affect only their surroundings

to optimize the code. Our general algorithm cannot assume such a thing.

Our work can be probably improved further, but it is reasonable to assume that the

general implementation will continue to be inferior to other implementations.

Bisector Construction

Besides affecting the time performance of the algorithm, constructing and manipulating

bisectors have other limitations. In certain cases, it is hard to construct the bisector of

two sites. The bisector could be two-dimensional or composed of several arcs, and the

efficient construction of it may not be trivial. The user does not need to know the details of

constructing lower envelopes of distance functions, indeed, but he/she may have to posses

fairly advanced knowledge in computational algebra.

In other cases, there may not be an existing traits class for the arrangement package that

supports the construction of an arrangement induced by the bisector curves. The user may

have to create a traits class for the arrangement package themselves.

One can also imagine diagrams that will not be supported by the framework due to the

hardness of the computation of their bisectors. For example, it is not clear what is the type

of the curves that constitute the boundaries of the cells of the zone diagram [AMT07].

Incremental Construction and Removal

Incremental insertion of Voronoi sites could be very useful [OBSC00,MGD03], for example,

for developing online Voronoi diagrams’ construction algorithms. Our framework can support

tion tree.

58 Chapter 5. Discussion: Advantages and Limitations

the insertion of a single site by partitioning the input to one set that consists of n− 1 sites

and another set that consists of a single site. Unfortunately, this insertion procedure is

expected to be most inefficient. The current implementation will try and bisect each of the

faces with the bisector of the new site and the dominant site on the face, which will result

in Ω(n) time per insertion operation.

A deletion operation of sites is also useful [Dev02,MGD03] but is not supported by the

framework. Adding this operation to the framework is not trivial.

6
Application: Minimum-Width Annulus of

Disks

In this chapter we describe the application of our framework to solve the problem of com-

puting a minimum-width annulus of a set of disks in the plane. Our algorithm is a gener-

alization of a known algorithm for computing a minimum-width annulus of a set of points

in the plane, and its implementation exploits the generality and the flexibility of our frame-

work. Section 6.1 gives a short introduction and background on the problem. Section 6.2

presents our generalized algorithm. Finally, Section 6.3 gives specific implementation details

and experimental results for the application.

6.1 Introduction

An annulus is the bounded area between two concentric circles. The width of an annulus is

the difference between the radii of the outer circle and the inner circle. Given a set of objects

in the plane the objective is to find a minimum-width annulus containing those objects.

Constructing a minimum-width annulus of a set of points has applications in diverse

fields. We list below two examples, taken from the areas of tolerancing metrology and

59

60 Chapter 6. Application: Minimum-Width Annulus of Disks

facility location; more applications can be found in [dBBB+98,dCD09] and other papers.

In the field of mechanical design, assessing the deviation of a manufactured object from

its ideal design is a key problem. If the manufactured object is round then this deviation

is called the roundness error of the object. When assessing the roundness error of a manu-

factured object, four types of roundness errors are most commonly used, that is Maximum

Inscribed Circle, Minimum Circumscribing Circle, Least Squares Center, and Minimum Ra-

dial Separation (MRS). The MRS roundness error is defined to be the minimum difference

between the radii of two concentric circles (one circumscribing and one inscribed). There-

fore, computing the MRS roundness error amounts to computing a minimum-width annulus

containing the points sampled from the manufactured object [Yap94].

Facility location generally deals with the placement of facilities for minimizing costs under

various restrictions. When considering a location for a new facility among existing facilities,

in many cases the most “fair” location is the location where the difference between the

maximal and the minimal effects on existing facilities is brought to a minimum [MS94]. In

other cases, facilities may have both desirable and obnoxious properties. For example, the

service area of a cell site1 should cover the locations of its clients, and due to aesthetic and

health constraints, should preferably be in the farthest location possible from all clients.2 In

both cases the center of a minimum-width annulus containing the locations of the existing

facilities and the locations of the clients, respectively, is a good location.

A minimum-width annulus does not always exist. If the width of the set of objects is

smaller than the width of any containing annulus, then there is no minimum-width annulus.3

Consider, for example, four collinear points in the plane. For every annulus containing the

four points, we can always find another annulus with smaller width by moving the center

of the original annulus away from the points on the line perpendicular to the line passing

through them.

In the case of point sets, the minimum-width annulus must have (at least) two points on

its outer circle and (at least) two points on its inner circle [Riv79,SJ99], which results in the

following observation:

Observation 6.1. The center of a minimum-width annulus of points in the plane must lie

on an intersection point of the nearest-site Voronoi diagram and the farthest-site Voronoi

diagram of the points.

1The location where antennas and other network communication equipment are placed in order to provide
wireless service in a geographic area.

2See http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Emory-Merryman for more details.
3The width of a set is defined to be the width of the thinest strip (i. e., the area bounded between two

parallel lines) containing it.

http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2004/Emory-Merryman

6.1. Introduction 61

The center of an empty circle touching (at least) two points is on an edge of the nearest-

site Voronoi diagram of the points, and the center of a circle containing all the points and

touching (at least) two points is on an edge of the farthest-site Voronoi diagram.

Using the above observation, Ebara et al. [EFNN89] gave a worst-case O(n2) time al-

gorithm for finding a minimum-width annulus of points in the plane. The algorithm was

reintroduced to the manufacturing community by Roy and Zhang [RZ92].

Similar methods were used to solve different variations of the problem. de Berg et al.

[dBBB+98] used nearest-site and farthest-site Voronoi diagrams to compute a minimum-

width annulus of point sets with various constraints on its radii (e. g., fixed inner radius).

Le and Lee [LL91] showed how to use the overlay of the medial axis of a simple polygon

(which is the Voronoi diagram of its edges restricted to the interior of the polygon) and

the farthest Voronoi diagram of the vertices of the polygon to compute a minimum-width

annulus bounding the polygon. Barequet et al. considered several problems and applied

similar techniques for the case of offset-polygon annuli containing a set of points [BBDG98,

BBDG05].

For special cases there are deterministic sub-quadratic algorithms. Garcia-Lopez et al.

[GLRS98] showed that given the final circular order of the points around the center of the

annulus (not a far-fetched scenario in real-world applications), a minimum-width annulus can

be found in worst-case time complexity of O(n logn). Swanson et al. [SLW95] introduced an

optimal O(n) time algorithm for computing the roundness of convex polygons. Devillers and

Ramos [DR02] gave an algorithm that exhibits linear running time in practice for point-sets

that are almost round.4

Several randomized sub-quadratic algorithms exist for finding a minimum-width annulus

of points in the plane [AAS97,AS96,TAS94]. The algorithm by Agarwal and Sharir [AS96]

achieves an expected running time of O(n3/2+ε) which is the best known algorithm to date.

Using core-sets Chan [Cha06] presented an (1 + ε)-factor approximation algorithm for the

minimum-width annulus, improving previously known results [AAHPS00,AHV04,Cha02].

In this chapter we describe an application of our framework that demonstrates its use-

fulness. We use our tools to find a minimum-width annulus containing a set of disks in the

plane. Section 6.2 deals with the theoretical aspect of our algorithm. Section 6.3 describes

major implementation details and some experimental results.

4By their terminology, a set is almost round if it is contained inside an annulus which satisfies W/RM ≤
0.1, where W is the width of the annulus and RM is the average of the inner and outer radii.

62 Chapter 6. Application: Minimum-Width Annulus of Disks

6.2 Algorithm for Minimum-Width Annulus of Disks

As mentioned above, when dealing with point sets, a minimum-width annulus can be found

by computing the overlay of the nearest-site and farthest-site Voronoi diagrams of the points.

A similar approach applies to the case of disk sites but the diagrams have to be defined more

carefully.

Consider the following farthest-point distance function from a point p ∈ R
2 to a set of

points S ⊂ R
2:

f(p, S) = sup
x∈S

||p− x||,

which measures the farthest distance from the point p to the set S. Consider the farthest-site

Voronoi diagram with respect to this distance function. We call this diagram the “farthest-

point farthest-site” Voronoi diagram. The distance function f(p, S) becomes the Euclidean

distance when the set S consists of a single point. However, this is not the case when the

set S is, say, a disk in the plane.

The following observation establishes a connection between the farthest-point farthest-

site Voronoi diagram of a set of disks and an additively-weighted Voronoi diagram, and

comes in handy below.

Observation 6.2. Let D be a set of disk in R
2. The farthest-point farthest-site Voronoi

diagram of D is identical to the Apollonius diagram of the disks with negated radii.

For a disk d in the plane with center c and radius r the farthest-point distance function

is ρ(p, d) = ||p − c|| + r. Recall that the Apollonius distance function is defined to be

ρ(p, d) = ||p− c|| − r. Next, observe that the farthest-point distance function is the same as

the Apollonius distance function with negative radii.

We prove that there is a minimum-width annulus (in case one exists) whose center is a

vertex of the overlay of the Apollonius diagram and the farthest-point farthest-site Voronoi

diagram of the disks.

Recall that in the case of point sets the center of a minimum-width annulus is an inter-

section point of the nearest-site Voronoi diagram and the farthest-site Voronoi diagram of

the points. In the case of disks, this is not true. Take for example a set of disks located

at (2, 0), (0, 3), (−4, 0), and (0,−5) with radii 1, 2, 3, and 4, respectively. In this setting,

the annulus centered at the origin with radii 1 and 9 is a minimum-width annulus, as its

width is equal to a diameter of one of the disks. The origin does not lie on an edge of the

farthest-point farthest-site Voronoi diagram, as the outer circle touches only one disk.

Let D = {d1, . . . , dn} be a collection of disks in the plane such that for all i, di 6⊆
⋃

j 6=i dj.

6.2. Algorithm for Minimum-Width Annulus of Disks 63

For simplicity of exposition, we assume here that n ≥ 3; the case of n < 3 is simple to

handle. We show that there is a minimum-width annulus whose bounding circles intersect

the disks of D in at least 4 points.

Observation 6.3. If N is a minimum-width annulus containing D then each of the inner

circle and the outer circle of N touches a disk of D.

Each minimum-width annulus must touch the disks of D in at least two points, as we can

shrink the outer circle of the annulus and expand the inner circle until each of them touches

a disk. Thus, fixing a point p in the plane as the center of a containing annulus fixes an

annulus bounding D for this center. We call this annulus the tight annulus fixed at p.

Let Np denote the tight annulus fixed at point p and let WNp
denote its width. Let

Ip,Op ⊆ D denote the set of disks that are touched by the inner and outer circles of Np,

respectively.

Definition 6.4 (Neighboring center in direction ~d). For a point p and a direction ~d in the

plane, consider the ray r emanating from p in direction ~d. r can be divided into maximally-

connected cells, such that every point x in a cell (x is the center of a tight annulus) obtains the

same Ix and Ox. Let p
′ be an interior point of the cell of p, or, if p comprises a single-point

cell, an interior point of the next cell in the direction of the ray. We call p′ a neighboring

center of p in direction ~d.

Lemma 6.5. There is no minimum-width annulus NO and two different disks A and B such

that IO = {A}, OO = {B}, and the centers of A, B and NO are collinear.

Proof. Suppose to the contrary that such a minimum-width annulus NO exists. Denote

by OA and OB the respective centers of A and B and by RA and RB their respective

radii. OA is on the segment OOB; see Figure 6.1 (a) for an illustration. Choose O′ to be a

neighboring center of O in a direction perpendicular to OOB. Then from triangle inequality

|OAOB| > |O′OB| − |O′OA| and

WNO
= (|OOB|+RB)− (|OOA| −RA) = |OAOB|+RB +RA > |O′OB| − |O′OA|+RB +RA.

Thus, NO′ has a smaller width which is a contradiction.

Lemma 6.6. If NO is a minimum-width annulus containing D then either |IO| > 1, or

|OO| > 1, or there is another annulus NO′ of minimum-width containing D such that

|IO′| > 1 or |OO′| > 1.

64 Chapter 6. Application: Minimum-Width Annulus of Disks

b
O

b
OBb

OA

b

O′

(a) Lemma 6.5

bO b
OB

b

OA

b

O′

(b) Lemma 6.6

bO b
OB

b
OA1

b

OA2

b

O′

(c) Theorem 6.7 case I (a)

bO b
OBb

OA1

b

OA2

b

O′

(d) Theorem 6.7 case I (b)

Figure 6.1: Illustrations for Theorem 6.7

Proof. Suppose to that IO = {A}, OO = {B}. Let RA and RB denote the respective radii

of A and B, and let OA and OB denote their respective centers.

In case that A = B then we can move O on the line that goes through O and OA away

from OA. The new annulus, centered at O′, has the same width but the radii of its bounding

circles are larger. We keep moving O until one of the circles intersects another disk.

If A 6= B then from Lemma 6.5, OA, OB, and O are not collinear (see Figure 6.1 (b) for

an illustration). Choose O′ to be a neighboring center of O in the direction of OB. Then by

triangle inequality |OOA| < |OO′|+ |O′OA| and

WNO
= |OOB|+RB − (|OOA| − RA) = |OO′|+ |O′OB|+RB − |OOA|+RA

> |O′OB| − |O′OA|+RB +RA.

Thus the annulus NO′ has a smaller width then NO, which is a contradiction.

Theorem 6.7. If there is a minimum-width annulus containing D, then there is a minimum-

width annulus NO such that |IO|+ |OO| ≥ 4.

Proof. Suppose to the contrary that there is a minimum-width annulus NO containing the

6.2. Algorithm for Minimum-Width Annulus of Disks 65

disks of D, but there is no minimum-width annulus whose total number of intersection points

with the disks of D ≥ 4. From Lemma 6.6, we may assume that either |IO| > 1, or |OO| > 1.

Case I: Assume that IO = {A1, A2} and OO = {B} Let RA1
, RA2

, and RB denote the

respective radii of A1, A2, and B, and let OA1
, OA2

, and OB denote their respective

centers.

If B ∈ IO then we can move O along the bisector of A1 and A2 (which is one branch

of a hyperbola), increasing the distance from A1 and A2. WNO
(which equals to 2 · RB)

will stay the same. As the radius of the bounding circles grows one of the circles will

eventually intersect another disk.

If B 6∈ IO then there are two cases:

Case a: OA1
and OA2

are not on the segment OOB (see Figure 6.1 (c) for an illustration).

Choose O′ to be the neighboring center near O in the direction of OB. Then again

from triangle inequality we get |OO′| > |OOAi
| − |O′OAi

| and

WNO
= |OOB|+RB − (|OOAi

| − RAi
) =

|OO′|+ |O′OB| − |OOAi
|+RB +RAi

> |O′OB| − |O′OAi
|+ RB +RAi

= WNO′
,

which is a contradiction.

Case b: Without loss of generality, assume that OA1
is on the segment OOB (see Fig-

ure 6.1 (d) for an illustration). For every point P on the open segment OOA1
we

get

|OP |+ |POA2
| − RA2

> |OOA2
| − RA2

= |OOA1
| −RA1

= |OP |+ |O′OA1
| −RA1

,

and therefore

|POA2
| − RA2

> |POA1
| −RA1

.

This means that an neighboring center O′ in the direction of OA1
from O satisfies

OO′ = OO and IO′ = IO \ {A2}. The annulus NO′ has the same width as NO and

therefore is also a minimum-width annulus whose center is collinear with OA1
and OB.

This is a contradiction to Lemma 6.5.

Case II: |IO| = 1 and |OO| = 2. The proof of this case is similar to the first case and therefore

omitted.

66 Chapter 6. Application: Minimum-Width Annulus of Disks

(a) (b) (c) (d)

Figure 6.2: Computing a minimum-width annulus of a set of disks. (a) The Apollonius diagram of the
set of disks. (b) The farthest-point farthest-site Voronoi diagram of the set of disks. (c) A minimum-
width annulus of the set of disks. The center of the annulus is a vertex in the overlay of the Apollonius
and the farthest-point farthest-site Voronoi diagrams. (d) A highly degenerate scenario for computing
a minimum-width annulus of a set of disks.

From Theorem 6.7 it is clear that if there is a minimum-width annulus then there is a

minimum-width annulus centered at a point O that falls into one of the following three cases:

1. |IO| ≥ 3 and |OO| = 1. This means that O coincides with a vertex of the Apollonius

diagram of the disks.

2. |IO| = 1 and |OO| ≥ 3. This means that O coincides with a vertex of the farthest-point

farthest-site Voronoi diagram of the disks.

3. |IO| ≥ 2 and |OO| ≥ 2. In this case O lies on a Voronoi edge of the Apollonius diagram

of the disks and on a Voronoi edge of the farthest-point farthest-site Voronoi diagram

of the disks.

We therefore construct each of the diagrams (the Apollonius and the farthest-point farthest-

site Voronoi), and then overlay them. For each vertex O of the overlay, we retrieve four

relevant disks (either three touching the inner circle and the one touching the outer circle, in

case 1, or three touching the outer circle and the one touching the inner circle, in case 2, or

two pairs of disks touching respectively the inner and outer circles), and compute the width

of the resulting annulus. We output the annulus of the smallest width. Figure 6.2 illustrates

the algorithm for computing a minimum-width annulus of disks and a highly degenerate

input that is being handled properly by our implementation. More implementation details

can be found in Section 6.3.

The Apollonius diagram (additively-weighted Voronoi diagram) is of linear complexity

and constitutes an abstract Voronoi diagram [Kle89]. The farthest-site Apollonius diagram

is a farthest abstract Voronoi diagram [MMR01], and is, therefore, of linear complexity too.

Observation 6.2 suggests that the farthest-point farthest-site Voronoi diagram is actually a

linear-sized farthest Apollonius diagram.

6.3. Implementation Details and Experimental Results 67

The construction of each of the above types of Voronoi diagrams using the divide-and-

conquer algorithm described in Chapter 3 yields a worst-case time complexity of O(n2+ε).

Overlaying the two diagrams with a sweep based algorithm has O((n + k) logn) worst-case

time complexity where k is the number of intersections between the diagrams. The total

worst-case time complexity of the algorithm is therefore O(n2+ε).

Though the worst-case time complexity of the algorithm is larger than quadratic, it is

reasonable to assume that the expected time complexity is, in many cases, smaller. Indeed,

applying Corollary 3.2 to our case results in expected construction time of O(n log2 n) for

both Apollonius and farthest-point farthest-site Voronoi diagrams, and in total, expected

running time of O(n log2 n + k log n) where k is the number of intersections between the

diagrams. It is true that we may still have Θ(n2) intersections between the two diagrams, but,

though not proved for disks, for random point sites5 it is known that the expected number

of intersections between the farthest and the nearest Voronoi diagrams is linear [BD98].

6.3 Implementation Details and Experimental Results

This section gives further, and more technical, information about the implementation details

of the algorithm described in the previous section. The implementation is exact and robust,

utilizing software components described in Chapter 4 and other tools from Cgal [2].

The first step of the algorithm is the construction of the Apollonius diagram of a set

of disks. The construction is enabled through the implemented Apollonius traits 2 traits

class for constructing Apollonius diagrams of disks in the plane; see Section 4.1.3.

The second step of the algorithm is the construction of the farthest-point farthest-site

Voronoi diagram of a set of disks. Again, Observation 6.2 comes in handy. As the farthest-

point farthest-site Voronoi diagram is a farthest-site Apollonius diagram, we easily pro-

duce a traits class for constructing farthest-point farthest-site Voronoi diagrams. The new

Farthest point farthest site traits 2 traits class provides the user with a better interface

for constructing the farthest-point farthest-site Voronoi diagram as it does not require to

negate the radii of the disks.

We use the overlay function from the Arrangement on surface 2 package to overlay the

Apollonius diagram and the farthest-point farthest-site Voronoi diagram. Given two ar-

rangements, the overlay operation sweeps over them and constructs the resulting arrange-

ment, while updating its features based on data associated with the input arrangements’

features [WFZH07]. For example, a new face f is created by the overlap of two faces f1 and

5Drawn independently from a density on a compact convex set of the plane.

68 Chapter 6. Application: Minimum-Width Annulus of Disks

Table 6.1: Time consumption (in seconds) of minimum-width annuli computation and sizes of the
corresponding constructed diagrams. FPFS — farthest-point farthest-site, V — the number of vertices
of the diagram, E — the number of edges of the diagram, F — the number of faces of the diagram, T
— the time in seconds consumed by the respective phase, C — the time in seconds consumed during
the comparison of the candidates for the annulus center. “dgn *” are input files in a degenerate setting
(see Figure 6.2 (d) for an illustration), and “rnd *” are input files in a random setting.

Input
Apollonius FPFS VD Overlay

C
Total

TimeV E F T V E F T V E F T

rnd 50 84 128 45 6.74 10 21 12 2.40 126 213 88 0.44 0.57 10.16

rnd 100 162 242 81 17.47 17 35 19 5.36 238 395 158 0.81 1.46 25.12

rnd 200 317 460 144 44.07 15 31 17 11.16 416 659 244 1.28 1.33 57.86

rnd 500 672 967 296 136.46 16 33 18 29.30 775 1174 400 1.85 1.97 169.59

dgn 50 59 106 48 5.74 1 25 25 1.94 100 213 114 0.84 0.30 8.83

dgn 100 134 232 99 16.57 1 50 50 5.83 239 492 254 2.93 1.11 26.46

dgn 200 304 502 199 42.60 1 100 100 15.77 581 1156 576 7.60 2.78 68.76

dgn 500 785 1262 478 154.37 1 239 239 56.21 1645 3221 1577 37.93 7.94 256.47

f2 of the two input arrangements, respectively, and its data is updated with the data from

f1 and f2.

The generic overlay function is parameterized with an overlay-traits class, which handles

the merge operations of data associated with any two features of the respective two diagrams

(there are 10 different cases to handle). In our case, the MWA overlay traits 2 class is the

model of Cgal’s OverlayTraits concept and updates the features of the resulting arrangement

with dominating sites from features of both diagrams. The sites of the Apollonius diagram

are kept separate from the sites of the farthest-point farthest-site Voronoi diagram in two

sets associated with a feature of the resulting arrangement.

The two geometry-traits classes (Apollonius traits 2 and Farthest point farthest -

site traits 2) use the same (C++) types of geometric primitives and operations, even though

they themselves consist different C++ types. The overlay function previously supported only

arrangements that were instantiated with the same geometric-traits type — even if the

underlying curves were of the same type. We changed the interface of the overlay function

and parts of its implementation to also support arrangements with different geometry-traits

types but the same types of geometric primitives (points, curves, x-monotone curves, etc.).

We compare the widths of all annuli created at vertices of the overlay to find the center

of our minimum-width annulus (as described in Section 6.2). We use rational interval-

arithmetic optimization similar to the one applied in the implementation of the proximity

predicates of the Apollonius traits class (Section 4.1.3).

Table 6.1 shows the sizes of the constructed diagrams in each phase of the algorithm and

6.3. Implementation Details and Experimental Results 69

the time consumption (in seconds) of the execution of each phase. The vertices of the overlay

are the candidates for the center of the annulus. The experiments were carried out on an

Intel R© CoreTM2 Duo 2GHz processor with 1GB memory running Linux operating system.

70 Chapter 6. Application: Minimum-Width Annulus of Disks

7
Conclusions and Future Work

Our framework together with the existing traits classes of the arrangement package of Cgal

provide the means to produce various Voronoi diagrams embedded on two-dimensional sur-

faces in an exact and robust way. Moreover, the theoretical bound on the expected running

time of the algorithm is nearly optimal.

Future work is to enrich the variety of Voronoi diagrams computed with our software

to include Voronoi diagrams of circular arcs [Yap87], Bregman Voronoi diagrams [NBN07],

Voronoi diagrams in the hyperbolic Poincaré half-plane [OT96] or in the Poincaré hyperbolic

disk [NM06, NN09], and Hausdorff Voronoi diagrams [OBSC00]. Other Voronoi diagrams

embedded on different surfaces, for example, cylinders or tori, can be developed.

Some of the above diagrams have bisectors that can be handled with existing traits classes

available in the arrangement package. All two-sites Voronoi diagrams mentioned in [BDD02]

can be developed by traits class from the arrangement package; the most complicated dia-

grams there can use the algebraic traits class for the arrangement package.

As the arrangement package evolves, more Voronoi diagrams will become achievable. For

example, one of the future traits classes for the arrangement package will probably be a traits

class for the construction of arrangements induced by general circular arcs, embedded on the

sphere; such an implementation can be based on the work by Cazals and Loriot [CL09]. This

71

72 Chapter 7. Conclusions and Future Work

traits class will enable the construction of Möbius diagrams on the sphere.

The class of all diagrams on the sphere with circle bisectors that constitute a Voronoi

diagram is identical to the class of Möbius diagrams on the sphere [BWY06, §2.4.1]. A

similar conjecture appears in Section 4.2.2, namely, the class of all Voronoi diagrams with

great circles as bisectors is identical to the class of power diagrams on the sphere. The

proof for the Möbius case relies on a similar theorem for planar power diagrams and affine

bisectors, which is proved using advanced tools from linear algebra. Proving this conjecture

remains an open problem.

Another major goal is to improve the performance of the code in practice. A possible

direction to consider is to avoid overlaying the entire arrangements in the merge step. Some

diagrams are known to merge in linear time by a deterministic partitioning of the set of

sites [Kle89], which could alleviate the need to overlay large portions of the Voronoi diagrams

where portions from one diagram are known to always dominate portions from the other.

The time consumption of our algorithm directly depends on the implementation of the

traits classes, as they supply the algorithm with all predicates and constructors. The per-

formance of some of the implemented traits classes in this thesis may also be improved. For

example, one can try and implement a traits class for the Möbius diagram based on the

CGAL::Circular kernel 2 provided by Cgal [PTT06], and apply other filtering techniques.

Such an implementation should be compared against our implementation.

As described in Chapter 6 the problem of finding a minimum-width annulus was addressed

almost solely for the case of point sets. The case of a simple linear polygon can also be

solved using an overlay of its medial axis and the farthest Voronoi diagram of its vertices.

The medial axis of the polygon corresponds to the nearest Voronoi diagram of the polygon’s

edges restricted to the inside of the polygon. There is a strong reason to believe that similar

techniques to the ones applied in this thesis, to compute the minimum-width annulus of a

set of disks, can be applied to other types of objects, utilizing our framework.

Bibliography

[AAA+09] Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, Thomas Hackl, Bert

Jüttler, Elisabeth Pilgerstorfer, and Margot Rabl. Divide-and-conquer for Vo-

ronoi diagrams revisited. In Abstracts of the 25th European Workshop on Com-

putational Geometry, pages 293–296, 2009.

[AAHPS00] Pankaj Kumar Agarwal, Boris Aronov, Sariel Har-Peled, and Micha Sharir.

Approximation algorithms for minimum-width annuli and shells. Discrete &

Computational Geometry, 24(4):687–705, December 2000.

[AAS97] Pankaj Kumar Agarwal, Boris Aronov, and Micha Sharir. Computing envelopes

in four dimensions with applications. SIAM Journal on Computing, 26(6):1714–

1732, 1997.

[ADA07] Lakulish Antani, Christophe Delage, and Pierre Alliez. Mesh sizing with ad-

ditively weighted Voronoi diagrams. In Proceedings of the 16th International

Meshing Roundtable Conference (IMR), pages 335–346, 2007.

[AE84] Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for con-

structing the weighted Voronoi diagram in the plane. Pattern Recognition,

17(2):251–257, 1984.

[AFW88] Boris Aronov, Steven Jonathon Fortune, and Gordon T. Wilfong. The furthest-

site geodesic Voronoi diagram. In Proceedings of the 4th Annual ACM Sym-

posium on Computational Geometry (SoCG), pages 229–240, New York, NY,

USA, 1988. Association for Computing Machinery (ACM) Press.

[AHV04] Pankaj Kumar Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Ap-

proximating extent measures of points. Journal of the ACM, 51(4):606–635,

2004.

73

74 BIBLIOGRAPHY

[AK00] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Joerg-Rudiger Sack

and Jorge B. Urrutia, editors, Handbook of Computational Geometry, chapter 5,

pages 201–290. Elsevier Science Publishers, B.V. North-Holland, 2000.

[Ale01] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison-Wesley, Boston, MA, USA, 2001.

[AMT07] Tetsuo Asano, Jǐŕı Matoušek, and Takeshi Tokuyama. Zone diagrams: Exis-

tence, uniqueness, and algorithmic challenge. SIAM Journal on Computing,

37(4):1182–1198, 2007.

[Ans04] Kurt Martin Anstreicher. The thirteen spheres: A new proof. Discrete &

Computational Geometry, 31(4):613–625, March 2004.

[AS96] Pankaj Kumar Agarwal and Micha Sharir. Efficient randomized algorithms for

some geometric optimization problems. Discrete & Computational Geometry,

16(4):317–337, April 1996.

[AS00] Pankaj Kumar Agarwal and Micha Sharir. Arrangements and their applications.

In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational

Geometry, pages 49–119. Elsevier Science Publishers, B.V. North-Holland, Am-

sterdam, 2000.

[ASS96] Pankaj Kumar Agarwal, Otfried Schwarzkopf, and Micha Sharir. The overlay

of lower envelopes and its applications. Discrete & Computational Geometry,

15(1):1–13, January 1996.

[Aus99] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley,

1999.

[BBDG98] Gill Barequet, Amy J. Briggs, Matthew Thomas Dickerson, and Michael T.

Goodrich. Offset-polygon annulus placement problems. Computational Geom-

etry: Theory and Applications, 11(3-4):125–141, 1998.

[BBDG05] Gill Barequet, Prosenjit Bose, Matthew Thomas Dickerson, and Michael T.

Goodrich. Optimizing a constrained convex polygonal annulus. Journal of

Discrete Algorithms, 3(1):1–26, 2005.

[BBP01] Hervé Brönnimann, Cristoph Burnikel, and Sylvain Pion. Interval arithmetic

yields efficient dynamic filters for computational geometry. Discrete Applied

Mathematics, 109(1-2):25–47, 2001.

BIBLIOGRAPHY 75

[BD98] Prosenjit Bose and Luc Devroye. Intersections with random geometric objects.

Computational Geometry: Theory and Applications, 10(3):139–154, June 1998.

[BDD02] Gill Barequet, Matthew Thomas Dickerson, and Robert Lewis Scot Drysdale.

2-point site Voronoi diagrams. Discrete Applied Mathematics, 122(1-3):37–54,

2002.

[BDP+02] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and

Mariette Yvinec. Triangulations in CGAL. Computational Geometry: Theory

and Applications, 22(1-3):5–19, May 2002.

[BE08] Eric Berberich and Pavel Emeliyanenko. Cgal’s curved kernel via analysis.

ACS Technical Report ACS-TR-123203-04, MPI, 2008.

[BFH+07] Eric Berberich, Efi Fogel, Dan Halperin, Kurt Mehlhorn, and Ron Wein. Sweep-

ing and maintaining two-dimensional arrangements on surfaces: A first step. In

Proceedings of the 15th Annual European Symposium on Algorithms (ESA),

volume 4698 of LNCS, pages 645–656. Springer-Verlag, 2007.

[BGZ00] François Baccelli, Catherine Gloaguen, and Sergei Zuyev. Superposition of pla-

nar Voronoi tessellations. Stochastic Models, 16:69–98, 2000.

[BM07] Eric Berberich and Michal Meyerovitch. Computing envelopes of quadrics. In

Proceedings of the 23rd European Workshop on Computational Geometry, pages

235–238. Technische Universitaet Graz, March 2007.

[BMS94] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. How to compute the

Voronoi diagram of line segments: Theoretical and experimental results. In Pro-

ceedings of the 2nd Annual European Symposium on Algorithms (ESA), volume

855 of LNCS, pages 227–239. Springer-Verlag, 1994.

[BO79] Jon Louis Bentley and Thomas Ottmann. Algorithms for reporting and counting

geometric intersections. IEEE Transactions on Computers, 28(9):643–647, 1979.

[BWY06] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec. Curved Voro-

noi diagrams. In Jean-Daniel Boissonnat and Monique Teillaud, editors, Effec-

tive Computational Geometry for Curves and Surfaces. Springer-Verlag, 2006.

[CDR92] John Canny, Bruce Donald, and Eugene K. Ressler. A rational rotation method

for robust geometric algorithms. In Proceedings of the 8th Annual ACM Sym-

posium on Computational Geometry (SoCG), pages 251–260. Association for

Computing Machinery (ACM) Press, 1992.

76 BIBLIOGRAPHY

[cga08] CGAL User and Reference Manual, 3.4 edition, 2008.

[Cha02] Timothy Moon-Yew Chan. Approximating the diameter, width, smallest en-

closing cylinder, and minimum-width annulus. International Journal of Com-

putational Geometry and Applications, 12(1-2):67–85, 2002.

[Cha06] Timothy Moon-Yew Chan. Faster core-set constructions and data-stream algo-

rithms in fixed dimensions. Computational Geometry: Theory and Applications,

35(1-2):20–35, August 2006.

[CL09] Frédéric Cazals and Sébastien Loriot. Computing the arrangement of circles

on a sphere, with applications in structural biology. Computational Geometry:

Theory and Applications, 42(6-7):551–565, 2009.

[CS89] Kenneth Lee Clarkson and Peter Williston Shor. Applications of random sam-

pling in computational geometry, II. Discrete & Computational Geometry,

4(1):387–421, December 1989.

[dBBB+98] Mark de Berg, Prosenjit Bose, David Bremner, Suneeta Ramaswami, and Gor-

don T. Wilfong. Computing constrained minimum-width annuli of point sets.

Computer-Aided Design, 30(4):267–275, 1998.

[dCD09] Pedro Machado Manhães de Castro and Olivier Devillers. Fast Delaunay tri-

angulation for converging point relocation sequences. In Abstracts of the 25th

European Workshop on Computational Geometry, pages 231–234, 2009.

[Des44] René Descartes. Principia philosophiæ. Ludovicum Elzevirium, Amsterdam,

1644.

[Dev02] Olivier Devillers. On deletion in Delaunay triangulation. International Journal

of Computational Geometry and Applications, 12:193–205, 2002.

[DR02] Olivier Devillers and Pedro Antonio Ramos. Computing roundness is easy if

the set is almost round. International Journal of Computational Geometry and

Applications, 12(3):229–248, June 2002.

[Dwy87] Rex A. Dwyer. A faster divide-and-conquer algorithm for constructing Delaunay

triangulations. Algorithmica, 2(1-4):137–151, November 1987.

[EFNN89] Hiroyuki Ebara, Noriyuki Fukuyama, Hideo Nakano, and Yoshiro Nakanishi.

Roundness algorithms using the Voronoi diagrams. In Abstracts of the 1st Cana-

dian Conference on Computational Geometry, page 41, 1989.

BIBLIOGRAPHY 77

[EK06] Ioannis Zacharias Emiris and Menelaos Ioannis Karavelas. The predicates of the

Apollonius diagram: Algorithmic analysis and implementation. Computational

Geometry: Theory and Applications, 33(1-2):18–57, January 2006.

[EK08] Arno Eigenwillig and Michael Kerber. Exact and efficient 2D-arrangements

of arbitrary algebraic curves. In Proceedings of the 19th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 122–131, Philadelphia, PA,

USA, 2008. Society for Industrial and Applied Mathematics (SIAM).

[ELLD07] Hazel Everett, Sylvain Lazard, Daniel Lazard, and Mohab Safey El Din. The

Voronoi diagram of three lines. In Proceedings of the 23rd Annual ACM Sym-

posium on Computational Geometry (SoCG), pages 255–264, New York, NY,

USA, 2007. Association for Computing Machinery (ACM) Press.

[ES86] Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrange-

ments. Discrete & Computational Geometry, 1(1):25–44, December 1986.

[ETT08] Ioannis Zacharias Emiris, Elias P. Tsigaridas, and George Tzoumas. Voronoi

diagram of ellipses in CGAL. In Abstracts of the 24th European Workshop on

Computational Geometry, pages 87–90, 2008.

[FGK+00] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven

Schönherr. On the design of Cgal a computational geometry algorithms library.

Software — Practice and Experience, 30(11):1167–1202, 2000.

[Fog08] Efi Fogel. Minkowski Sum Construction and other Applications of Arrangements

of Geodesic Arcs on the Sphere. PhD thesis, Tel-Aviv University, October 2008.

[For87] Steven Jonathon Fortune. A sweepline algorithm for Voronoi diagrams. Algo-

rithmica, 2(1-4):153–174, November 1987.

[FP06] Andreas Fabri and Sylvain Pion. A generic lazy evaluation scheme for exact

geometric computations. In Proceedings of the 2nd Library-Centric Software

Design Workshop, 2006.

[FSH08a] Efi Fogel, Ophir Setter, and Dan Halperin. Exact implementation of arrange-

ments of geodesic arcs on the sphere with applications. In Abstracts of the 24th

European Workshop on Computational Geometry, pages 83–86, 2008.

[FSH08b] Efi Fogel, Ophir Setter, and Dan Halperin. Movie: Arrangements of geodesic

arcs on the sphere. In Proceedings of the 24th Annual ACM Symposium on

78 BIBLIOGRAPHY

Computational Geometry (SoCG), pages 218–219. Association for Computing

Machinery (ACM) Press, 2008.

[FWH04] Efi Fogel, Ron Wein, and Dan Halperin. Code flexibility and program efficiency

by genericity: Improving Cgal’s arrangements. In Proceedings of the 12th An-

nual European Symposium on Algorithms (ESA), volume 3221 of LNCS, pages

664–676. Springer-Verlag, 2004.

[GKS92] Leonidas John Guibas, Donald Ervin Knuth, and Micha Sharir. Randomized

incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7(1-

6):381–413, June 1992.

[GLRS98] Jesus Garcia-Lopez, Pedro Antonio Ramos, and Jack Snoeyink. Fitting a set of

points by a circle. Discrete & Computational Geometry, 20(3):389–402, October

1998.

[GS78] Peter J. Green and Robin Sibson. Computing Dirichlet tessellations in the

plane. The Computer Journal, 21(2):168–173, 1978.

[GS83] Leonidas John Guibas and Jorge Stolfi. Primitives for the manipulation of

general subdivisions and the computation of Voronoi diagrams. In Proceedings

of the 15th Annual ACM Symposium on Theory of Computing (STOC), pages

221–234, New York, NY, USA, 1983. Association for Computing Machinery

(ACM) Press.

[GS87] Leonidas John Guibas and Raimund Seidel. Computing convolutions by re-

ciprocal search. Discrete & Computational Geometry, 2(1):175–193, December

1987.

[Hel01] Martin Held. VRONI: An engineering approach to the reliable and efficient

computation of Voronoi diagrams of points and line segments. Computational

Geometry: Theory and Applications, 18(2):95–123, March 2001.

[HHK+07] Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael Seel.

An adaptable and extensible geometry kernel. Computational Geometry: Theory

and Applications, 38(1-2):16–36, September 2007.

[HKL+99] Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver.

Fast computation of generalized Voronoi diagrams using graphics hardware. In

Proceedings of the 26th Annual International Conference on Computer Graphics

BIBLIOGRAPHY 79

and Interactive Techniques, pages 277–286. Association for Computing Machin-

ery (ACM) Press, 1999.

[IIM85] Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the Laguerre

geometry and its applications. SIAM Journal on Computing, 14(1):93–105,

1985.

[JKM+06] Li Jin, Donguk Kim, Lisen Mu, Deok-Soo Kim, and Shi-Min Hu. A sweepline

algorithm for Euclidean Voronoi diagram of circles. Computer-Aided Design,

38(3):260–272, 2006.

[Kar04] Menelaos Ioannis Karavelas. A robust and efficient implementation for the

segment Voronoi diagram. In Proceedings of the 1st Annual International Sym-

posium on Voronoi Diagrams in Science and Engineering (ISVD), pages 51–62,

2004.

[Kar08] Menelaos Ioannis Karavelas. 2D segment Delaunay graphs. In CGAL Editorial

Board, editor, CGAL User and Reference Manual. 3.4 edition, 2008.

[Kle89] Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of LNCS.

Springer-Verlag, 1989.

[KLPY99] Vijay Karamcheti, Chuanwen Shen Li, Igor Pechtchanski, and Chee-Keng Yap.

A core library for robust numeric and geometric computation. In Proceedings of

the 15th Annual ACM Symposium on Computational Geometry (SoCG), pages

351–359. Association for Computing Machinery (ACM) Press, 1999.

[KMM93] Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental con-

struction of abstract Voronoi diagrams. Computational Geometry: Theory and

Applications, 3(3):157–184, August 1993.

[KMP+08] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee-Keng

Yap. Classroom examples of robustness problems in geometric computations.

Computational Geometry: Theory and Applications, 40(1):61–78, May 2008.

[KS03a] Vladlen Koltun and Micha Sharir. 3-dimensional Euclidean Voronoi diagrams

of lines with a fixed number of orientations. SIAM Journal on Computing,

32(3):616–642, 2003.

[KS03b] Vladlen Koltun and Micha Sharir. The partition technique for overlays of en-

velopes. SIAM Journal on Computing, 32(4):841–863, 2003.

80 BIBLIOGRAPHY

[KY03] Menelaos Ioannis Karavelas and Mariette Yvinec. The Voronoi diagram of

planar convex objects. In Proceedings of the 11th Annual European Symposium

on Algorithms (ESA), pages 337–348, 2003.

[LL91] Van-Ban Le and Der-Tsai Lee. Out-of-roundness problem revisited. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 13(3):217–223,

1991.

[LS03] Francois Labelle and Jonathan Richard Shewchuk. Anisotropic Voronoi dia-

grams and guaranteed-quality anisotropic mesh generation. In Proceedings of

the 19th ACM Symposium on Computational Geometry (SoCG), pages 191–

200, New York, NY, USA, 2003. Association for Computing Machinery (ACM)

Press.

[Mey06a] Michal Meyerovitch. Robust, generic and efficient construction of envelopes

of surfaces in three-dimensional space. In Proceedings of the 14th Annual

European Symposium on Algorithms (ESA), pages 792–803, 2006. Full the-

sis version on: http://acg.cs.tau.ac.il/projects/internal-projects/

envelopes-of-surfaces.

[Mey06b] Michal Meyerovitch. Robust, generic and efficient construction of envelopes of

surfaces in three-dimensional space. M.Sc. thesis, School of Computer Science,

Tel Aviv University, Tel Aviv, Israel, July 2006.

[MGD03] Mir Abolfazl Mostafavi, Christopher Gold, and Maciej Dakowicz. Delete and

insert operations in Voronoi/Delaunay methods and applications. Computers

& Geosciences, 29(4):523–530, 2003.

[MMR01] Kurt Mehlhorn, Stefan Meiser, and Ronald Rasch. Furthest site abstract Voro-

noi diagrams. International Journal of Computational Geometry and Applica-

tions, 11(6):583–616, December 2001.

[MS94] Michael T. Marsh and David A. Schilling. Equity measurement in facility lo-

cation analysis: A review and framework. European Journal of Operational

Research, 74(1):1–17, April 1994.

[MWZ08] Michal Meyerovitch, Ron Wein, and Baruch Zukerman. 3D envelopes. In

CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.4 edition,

2008.

http://acg.cs.tau.ac.il/projects/internal-projects/envelopes-of-surfaces
http://acg.cs.tau.ac.il/projects/internal-projects/envelopes-of-surfaces

BIBLIOGRAPHY 81

[Mye97] Nathan Myers. “Traits”: A new and useful template technique. In Stanly B.

Lippman, editor, C++ Gems, volume 5 of SIGS Reference Library, pages 451–

458. 1997.

[NBN07] Frank Nielsen, Jean-Daniel Boissonnat, and Richard Nock. On Bregman Vo-

ronoi diagrams. In Proceedings of the 18th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 746–755, Philadelphia, PA, USA, 2007.

Society for Industrial and Applied Mathematics (SIAM).

[Nie08] Frank Nielsen. An interactive tour of Voronoi diagrams on the GPU. In

ShaderX6: Advanced Rendering Techniques. Charles River Media, 2008.

[NLC02] Hyeon-Suk Na, Chung-Nim Lee, and Otfried Cheong. Voronoi diagrams on

the sphere. Computational Geometry: Theory and Applications, 23(2):183–194,

2002.

[NM06] Zahra Nilforoushan and Ali Mohades. Hyperbolic Voronoi diagram. In Pro-

ceedings of the 2006 International Conference on Computational Science and

Its Applications, pages 735–742, 2006.

[NN09] Frank Nielsen and Richard Nock. Hyperbolic Voronoi diagrams made easy. The

ACM Computing Research Repository, abs/0903.3287, March 2009.

[OBSC00] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial

Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley &

Sons, NYC, 2nd edition, 2000.

[OT96] Kensuke Onishi and Nobuki Takayama. Construction of Voronoi diagram on

the upper half-plane. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, 79(4):533–539, 1996.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An

Introduction. Springer-Verlag, New York, NY, USA, 1985.

[PTT06] Sylvain Pion, Monique Teillaud, and Constantinos Per. Tsirogiannis. Geometric

filtering of primitives on circular arcs. Technical Report ACS-TR-121, INRIA,

2006.

[Riv79] Theodore J. Rivlin. Approximating by circles. Computing, 21:93–104, 1979.

[Ros91] Harald Rosenberger. Order-k Voronoi diagrams of sites with additive weights

in the plane. Algorithmica, 6(1-6):490–521, June 1991.

82 BIBLIOGRAPHY

[RZ92] Utpal Roy and Xuzeng Zhang. Establishment of a pair of concentric circles with

the minimum radial separation for assessing roundness error. Computer-Aided

Design, 24(3):161–168, 1992.

[SA95] Micha Sharir and Pankaj Kumar Agarwal. Davenport–Schinzel Sequences and

Their Geometric Applications. Cambridge University Press, 1995.

[See94] Michael Seel. Eine Implementierung abstrakter Voronoidiagramme. Master’s

thesis, Universität des Saarlandes, 1994.

[SH75] Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proceedings

of the 16th IEEE Symposium on the Foundations of Computer Science, pages

151–162, 1975.

[SH09] Ophir Setter and Dan Halperin. Exact construction of minimum-width annulus

of disks in the plane. In Abstracts of the 25th European Workshop on Compu-

tational Geometry, pages 317–320, 2009.

[Sha03] Micha Sharir. The Clarkson-Shor technique revisited and extended. Combina-

torics, Probability & Computing, 12(2), 2003.

[SJ99] Michiel H. M. Smid and Ravi Janardan. On the width and roundness of a set

of points in the plane. International Journal of Computational Geometry and

Applications, 9(1):97–108, 1999.

[SLW95] Kurt Swanson, Der-Tsai Lee, and Vanban L. Wu. An optimal algorithm for

roundness determination on convex polygons. Computational Geometry: Theory

and Applications, 5(4):225–235, November 1995.

[SSH09] Ophir Setter, Micha Sharir, and Dan Halperin. Constructing two-dimensional

Voronoi diagrams via divide-and-conquer of envelopes in space. In Proceedings

of the 6th Annual International Symposium on Voronoi Diagrams in Science

and Engineering (ISVD), page To appear, 2009.

[Str97] Bjarne Stroustrup. The C++ Programming Language, Third Edition. Addison-

Wesley, Boston, MA, USA, 1997.

[Sug02] Kokichi Sugihara. Laguerre Voronoi diagram on the sphere. Journal for Geom-

etry and Graphics, 6(1):69–81, 2002.

BIBLIOGRAPHY 83

[TAS94] Sivan Toledo, Pankaj Kumar Agarwal, and Micha Sharir. Applications of para-

metric searching in geometric optimization. Journal of Algorithms, 17(17):292–

318, 1994.

[VJ02] David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Complete

Guide. Addison-Wesley, Boston, MA, USA, November 2002.

[WFZH07] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin. Advanced pro-

gramming techniques applied to Cgal’s arrangement package. Computational

Geometry: Theory and Applications, 38(1-2):37–63, September 2007.

[WFZH08] RonWein, Efi Fogel, Baruch Zukerman, and Dan Halperin. 2D arrangements. In

CGAL Editorial Board, editor, CGAL User and Reference Manual. 3.4 edition,

2008.

[Yap87] Chee-Keng Yap. An O(n log n) algorithm for the Voronoi diagram of a set

of simple curve segments. Discrete & Computational Geometry, 2(1):365–393,

December 1987.

[Yap94] Chee-Keng Yap. Exact computational geometry and tolerancing metrology.

Technical Report SOCS-94.50, McGill School of Computer Science, 1994.

[Yap04] Chee-Keng Yap. Robust geometric computation. In Jacob E. Goodman and

Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry,

chapter 41, pages 927–952. Chapman & Hall/CRC, 2nd edition, 2004.

[YD95] Chee-Keng Yap and Thomas Dubé. The exact computation paradigm. In D.-Z.

Du and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of

LNCS, pages 452–492. World Scientific, Singapore, 2nd edition, 1995.

84 BIBLIOGRAPHY

Links

[1] Boost — portable C++ libraries.

http://www.boost.org.

[2] Cgal — computational geometry algorithms library.

http://www.cgal.org.

[3] Core number library.

http://cs.nyu.edu/exact/core_pages.

[4] Gmp — GNU multiple precision arithmetic library.

http://gmplib.org.

[5] Gnuplot — an interactive plotting program.

http://www.gnuplot.info.

[6] Google maps.

http://maps.google.com.

[7] Stl — C++ standard template library.

http://www.sgi.com/tech/stl.

85

http://www.boost.org
http://www.cgal.org
http://cs.nyu.edu/exact/core_pages
http://gmplib.org
http://www.gnuplot.info
http://maps.google.com
http://www.sgi.com/tech/stl

	Introduction
	Preliminaries
	Voronoi Diagrams
	Divide-and-Conquer Algorithm for Envelopes
	CGAL and the Arrangement_on_surface_2 Package
	Exact Construction of Envelopes in CGAL

	From Envelopes to Voronoi Diagrams
	Divide-and-Conquer Algorithm for Voronoi Diagrams
	Theoretical Aspects
	Robust Implementation with CGAL
	Randomizing for Optimality

	Examples and Implementation Details
	Planar Voronoi Diagrams
	Voronoi Diagrams with Linear Bisectors
	Voronoi Diagrams with [Danny]Higher-degreeHigher-Degree Algebraic Bisectors
	Voronoi Diagrams with [Danny]Semi-algebraicSemi-Algebraic Bisectors

	Spherical Voronoi Diagrams
	Arrangements of Geodesic Arcs on the Sphere
	Power Diagrams on the Sphere

	Speeding-up the Computation

	Discussion: Advantages and [Danny]DisadvantagesLimitations
	Advantages
	[Danny]DisadvantagesLimitations

	Application: Minimum-Width Annulus of Disks
	Introduction
	Algorithm for Minimum-Width Annulus of Disks
	Implementation Details and [Danny]Experimental Results

	Conclusions and Future Work

